검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 25

        22.
        2015.09 서비스 종료(열람 제한)
        The aim of this study was to enhance the proliferation efficiency of spermatogonial stem cells (SSCs). In order to improve the proliferation efficiency, we investigated new factors that promote the proliferation of SSCs using in vitro culture method with natural plant extracts. Germ cell populations containing SSCs were collected 6- to 8-days-old from C57BL/6-TG-EGFP (C57GFP) mice and SSCs were isolated from the collected cells via magnetic-activated cell sorting (MACS). Since then, SSCs were cultured for a week with culture medium containing natural plant extracts at concentration of 0.1, 1, and 10 μg/mL. After a week of culture, we looked for an increase, especially a dose-dependent increase, in the number of cells compared to that of the control group. A dose-dependent increase, in the number of cells was observed in the Petasides japonicus-treated groups. Furthermore, we carried out repeated experiment that is process consisting of selection and additional segmentation to explore new factors for activating SSCs at the molecular level. As a results, Petasides japonicus butanol fraction significantly increased the proliferation rate of SSCs in a dose-dependent manner among Petasides japonicus fraction samples. We identified normal expression level of PLZF in SSCs cultured with plant extracts using immunocytochemistry method. Furthermore, we also carried out qRT-PCR and identified normal expression level of Lhx1 and GFRα1. The finding of this study could contribute to improvement of proliferation and activation for SSCs, using culture method with natural plant extracts.
        23.
        2015.09 서비스 종료(열람 제한)
        Spermatogonial stem cells (SSCs) possess the unique capacity of self-renewal and differentiation and thereby can transmit genetic information to the next generation. Combination with techniques such as isolation, culture, preservation, and transplantation of the SSC has facilitated the efficient method for production of transgenic animals, and preservation of livestock and endangered species. The purpose of this study was to genetically modify enriched populations of pre-pubertal germ cells using lentiviral transduction and to develop an efficient in vitro culture system and cryopreservation technique for bovine SSCs. To maximize the efficiency of genetic modification of bovine SSCs, effective enrichment techniques need to be developed. Selection of bovine SSCs using a combination of laminin and gelatin was resulted in a 8-fold enrichment. Selected cells were then transduced using a lentiviral vector containing the transgene for the enhanced green fluorescent protein. Transduction efficiency was 17%. Next, to enhance the efficiency of proliferation for in vitro culture, the effects of various culture conditions and growth factors on bovine cell proliferation were evaluated. Based on the results, we developed the optimal culture conditions [2× rat sertum free medium (rSFM) containing 0.1% FBS together with GDNF, GFRα1, bFGF, EGF, LIF, and CSF-1] for maintaining bovine SSCs over 3 months without any alteration of stem cell characteristics and functions. Also, to develop an effective cryopreservation technique for bovine SSCs, the effects of different freezing methods and various cryoprotective agents were tested. The recovery rate, and proliferation capacity of bovine SSCs were significantly greater for germ cells frozen using tissue freezing methods compared to cell freezing methods. Cryopreservation in the presence of 200 mM trehalose resulted in significantly greater recovery rate, and proliferation capacity of germ cells compared to control. As a results, cryopreservation using tissue freezing methods in the presence of 200 mM trehalose is an efficient cryopreservation protocol for bovine SSCs. Collectively, these findings can serve as a model for comprehensively understanding the biology of SSCs and the factors that regulate male fertility. Furthermore, results of this study will be integral for the continued refinement of techniques to manipulate bovine SSCs.
        24.
        2011.03 KCI 등재 서비스 종료(열람 제한)
        In the present study, embryoid bodies (EBs) obtained from induced pluripotent stem cells (iPSCs) were induced to differentiate into germ lineage cells by treatment with bone morphogenetic protein 4 (BMP4) and retinoic acid (RA). The results were compared to the results for embryonic stem cells (ESCs) and multipotent spermatogonial stem cells (mSSCs) and quantified using immunocytochemical analysis of germ cell-specific markers (integrin-, GFR-, CD90/Thy1), fluorescence activating cell sorting (FACS), and real time-RT-PCR. We show that the highest levels of germ cell marker-expressing cells were obtained from groups treated with 10 ng/ BMP4 or 0.01 RA. In the BMP4-treated group, GFR- and CD90/Thy-1 were highly expressed in the EBs of iPSCs and ESCs compared to EBs of mSSCs. The expression of Nanog was much lower in iPSCs compared to ESCs and mSSCs. In the RA treated group, the level of GFR- and CD90/Thy-1 expression in the EBs of mSSCs Induced pluripotent stem cells, Mouse embryonic stem cells, Multipotent spermatogonial stem cells, Germ cell lineage, Differentiation potential. was much higher than the levels found in the EBs of iPSCs and similar to the levels found in the EBs of ESCs. FACS analysis using integrin-, GFR-, CD90/Thy1 and immunocytochemistry using GFR- antibody showed similar gene expression results. Therefore our results show that iPSC has the potential to differentiate into germ cells and suggest that a protocol optimizing germ cell induction from iPSC should be developed because of their potential usefulness in clinical applications requiring patient-specific cells.
        25.
        2009.12 KCI 등재 서비스 종료(열람 제한)
        단분화성 정원줄기세포의 장기간 체외배양 중에 확립되는 다분화능 정원줄기세포는 배아줄기세포와 유사한 특성을 가져 3배엽성 세포로 체외분화가 가능하며 기형종을 형성할 수 있다. 본 연구에서는 선행 연구를 통해 outbred 생쥐(ICR strain)로부터 확립된 다분화능 정원줄기세포의 형질전환 가능성을 확인하며, 배아 내로 주입하여 유전적 키메라를 형성하는 효율을 배아줄기세포와의 비교를 통하여 검증하고자 하였다. 다분화능 정원줄기세포를 넣은 배아로부터 태어
        1 2