검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 11

        4.
        2016.10 구독 인증기관·개인회원 무료
        Spermatogonial stem cells (SCCs) is foundation for spermatogenesis throughout male adult life because they have ability of self-renewal and differentiation into spermatozoa. Storage of such SSCs is very important to study on male reproduction, which would contribute human male infertility to be treated. However, during cryopreservation, the most cells are damaged by cryoinjury such as apoptosis, necrosis, osmotic stress, oxidative stress and so on. For the reason, in cryopreservation technique, targeting purpose is what cells are stored stably without cryoinjury. The purpose of this study was to develop the cryoprotectant for decrease in cryoinjury of SSCs by using melatonin and necrostatin-1 as additive cryoprotectant. The SSCs with melatonin or necrostatin-1 was frozen for 1 month, and then thawed to evaluate survival, recovery and proliferation rate. The result showed that necrostatin-1 50 mM was significantly greater than DMSO control. Furthermore, we conducted the characterization of cryo-thawed SSCs with necrostatin-1 50 mM to confirm whether the SSCs could maintain the undifferentiated state. As a result, the normal expression of each marker, which is PLZF, GFRa1 and VASA, was observed except for C-kit, meaning that the cells could maintain the undifferentiated state regardless of cryopreservation. Therefore, the result indicates that the cryo-thawed SSCs have ability of proliferation and self-renewal. In conclusion, our finding verifies that cryopreservation of SSC with necrostatin-1 50 mM could be helpful to preserve the SSCs stably, contributing to various studies on male reproduction and infertility treatment
        5.
        2013.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        2012년 2월부터 11월까지 인천 지역에서 유통된 건고추 및 고춧가루 193건을 대상으로 아플라톡신 B1과 오크라톡 신 A의 오염도를 조사하였다. Immunoaffinity column 및 HPLC를 이용한 시험법은 모두 80% 이상의 회수율을 보였고, 아플라톡신 B1 및 오크라톡신 A의 검출한계는 각각 0.13 μg/kg, 0.30 μg/kg였다. 오염도 조사를 한 결과 아플라 톡신 B1은 17.1%의 검출율을 보였고 오크라톡신 A는 20.7% 의 검출율을 보였으며, 아플라톡신 B1의 검출농도는 0.14~ 9.67 μg/kg였고, 오크라톡신 A의 검출 농도는 0.31~3.31 μg/ kg였다. 이는 우리나라 식품공전 상의 기준인 10 μg/kg(아 플라톡신 B1), 7 μg/kg(오크라톡신 A)보다는 낮은 수치로 비교적 안전한 수준이었다.
        4,000원
        6.
        2011.10 구독 인증기관·개인회원 무료
        Artificial insemination and embryo transfer is one of the most important factors affecting to the production of fawn from deer nuclear transfer in the field of deer farms. This study* was conducted to establish the production technology of nuclear transfered embryo in deer. For estrus synchronization or superovulation tretments in flower deer and elk, each 10 does were inserted into the vagina for 14 days with CIDR (Pfizer New Zealand Ltd., NZ) for elk and Ring-CIDR (Bioculture Co., Ltd., Korea) for flower deer, and then those inserted devices were removed. The estrus synchronization of each 6 does were induced by the intramuscular injection of PGF2α (25 mg/head) and PG600 (hCG 200IU + PMSG 400IU, Intevet, Holland). Then, the superovulation of each 4 does of flower deer and elk was induced by additional injection of FSH (200 mg/ head) twice with an interval of 24 hours , respectively. Follicular oocytes were collected from each 2 does superovulated after 48 hours since the injection of PG600 and FSH. In the meantime, the ovarian response and the number of the collected ovarian follicles were investigated with the surgical operations. As a result, the average number of the collected ovarian follicles were 8.5 and 9.0 in flower deer and elk, respectively. The ovarian follicles collected from each two does were cultured in vitro for 48 hours with m-DMEM medium, and then the cell fusion was carried out after the nuclear transfer by the antler cell. As a result, 5 out of 18 ovarian follicles collected from 2 elk does were reached on the MII stage, but there was no generation resulting from the nuclear transferred embryos by the antler cell after enucleation. In 2 flower does, 7 out of 17 ovarian follicles were reached to the MII stage, but one of them was developed to parthenogenetic embryo as well despite a case of fusion from the nuclear transferred embryo. Embryos were collected in a surgical way on the 7th day after artificial insemination, numbers of average embryos collected were 2.5 and 3.0 in each 2 flower deer and elk does superovulated, respectively. The collected two embryos were transplanted to each 2 does synchronized. As a result, a head of fawn was produced from only one elk doe, where as a head of fawn were delivered from one out of 4 elk does artificial inseminated. Given these findings, we consider that more or less of problems might have occurred in vitro culture system of ovarian follicles in the production of nuclear transfered deer embryos. In addition, the greatest reason why both the aetificial insemination and embryo transfer failed was considered attributable to stress due to anesthesia and catching.
        7.
        2009.09 구독 인증기관 무료, 개인회원 유료
        Spermatogonial stem cells(SSCs) only are responsible for the generation of progeny and for the transmission of genetic information to the next generation in male. Other in vitro studies have cultured SSCs for proliferation, differentiation, and genetic modification in mouse and rat. Currently, information regarding in vitro culture of porcine Germline Stem Cell(GSC) such as gonocyte or SSC is limited and is in need of further studies. Therefore, in this study, we report development of a successful culture system for gonocytes of neonatal porcine testes. Testis cells were extracted from 10~14-day-old pigs. These cells were harvested using enzymatic digestion, and the harvested cells were purified with combination of percoll, laminin, and gelatin selection techniques. The most effective culture system of porcine gonocytes was established through trial experiments which made a comparison between different feeder cells, medium, serum concentrations, temperatures, and O2 tensions. Taken together, the optimal condition was established using C166 or Mouse Embryonic Fibroblast(MEF) feeder cell, Rat Serum Free Medium(RSFM), 0% serum concentration, 37℃ temperature, and O2 20% tension. Although we discovered the optimal culture condition for proliferation of porcine gonocytes, the gonocyte colonies ceased to expand after one month. These results suggest inadequate acquirement of ingredients essential for long term culture of porcine GSCs. Consequently, further study should be conducted to establish a successful long-term culture system for porcine GSCs by introducing various growth factors or nutrients.
        4,000원
        8.
        2009.03 구독 인증기관 무료, 개인회원 유료
        The current study was designed to evaluate the effects of the reactive oxygen species (ROS) generated with a xanthine (X) and xanthine oxidase system (XO) on sperm function and DNA fragmentation in porcine spermatozoa. ROS were produced by a combination of 1,000 μM X and 50 mU/ml XO. The ROS scavengers such as superoxide dismutase (SOD) (200 U/ml) and catalase (CAT) (500 U/ml) were also tested. Spermatozoa were incubated for 2 hours in BWW medium with a combination of X-XO supplemented with or without antioxidants at 37℃ under 5% CO2 incubator. Ca-ionophore-induced acrosome reaction, the proportion of swollen spermatozoa under hypo-osmotic condition, malondialdehyde formation for the analysis of lipid peroxidation, and the proportion of DNA fragmentation were determined after 2 hours incubation. The action of ROS on porcine spermatozoa resulted in decreased Ca-ionophore-induced acrosome reaction and membrane integrity, increased the formation of malondialdehyde, and the proportion of sperm with DNA fragmentation(p<0.05). The toxic effects caused by ROS were completely alleviated by CAT in terms of sperm function and characteristics, however SOD did not serve the same scavenger effect as CAT. To conclude, the ROS can cause significant damage to porcine sperm functions and characteristics, which can be minimized by the use of antioxidants.
        4,000원
        11.
        2015.09 서비스 종료(열람 제한)
        The aim of this study was to enhance the proliferation efficiency of spermatogonial stem cells (SSCs). In order to improve the proliferation efficiency, we investigated new factors that promote the proliferation of SSCs using in vitro culture method with natural plant extracts. Germ cell populations containing SSCs were collected 6- to 8-days-old from C57BL/6-TG-EGFP (C57GFP) mice and SSCs were isolated from the collected cells via magnetic-activated cell sorting (MACS). Since then, SSCs were cultured for a week with culture medium containing natural plant extracts at concentration of 0.1, 1, and 10 μg/mL. After a week of culture, we looked for an increase, especially a dose-dependent increase, in the number of cells compared to that of the control group. A dose-dependent increase, in the number of cells was observed in the Petasides japonicus-treated groups. Furthermore, we carried out repeated experiment that is process consisting of selection and additional segmentation to explore new factors for activating SSCs at the molecular level. As a results, Petasides japonicus butanol fraction significantly increased the proliferation rate of SSCs in a dose-dependent manner among Petasides japonicus fraction samples. We identified normal expression level of PLZF in SSCs cultured with plant extracts using immunocytochemistry method. Furthermore, we also carried out qRT-PCR and identified normal expression level of Lhx1 and GFRα1. The finding of this study could contribute to improvement of proliferation and activation for SSCs, using culture method with natural plant extracts.