This study used hydroacoustic method to identify the vertical and horizontal distribution of Antarctic silverfish in the Ross Sea, Antarctica. In February and December 2018, Antarctic silverfish was detected up to 250 meters, and was mainly distributed in water depths of 20 to 30 meters. The horizontal distribution of Antarctic silverfish was mostly undetected in February, and December showed a relatively stronger distribution than that of February. Antarctic silverfish is characterized by their distribution near sea ice.
We explored the frequency response of krill target strength (TS) to understand the Antarctic krill (Euphausia superba) and ice krill (Euphausia crystallorophias) using the stochastic distorted-wave Born approximation (SDWBA) model. The results showed that the distribution of orientation and the fatness factor could significantly impact on the frequency response of TS. Krill TS is clearly depended on acoustic properties, which could affect to estimate the biomass of two krill species. The results provide insight into the importance of understanding TS variation to estimate the Antarctic krill and ice krill biomass, and their ecology related to the environmental features in the Southern Ocean.
In this study, the target strength for multi-frequency (38 kHz, 120 kHz, 200 kHz) of juvenile silverfish (Pleuragramma antarcticum) was estimated using by the KRM (Kirchhoff-ray mode) model. The body shape of the silverfish was described by a picture and the body length of nine individuals ranged in 1.8 cm to 8.8 cm. The maximum TScm according to the total length for the constant term (b20) was – 92.93 dB at 38 kHz, – 86.63 dB at 120 kHz, and – 85.89 dB at 200 kHz, respectively. The averaged TScm according to total length for the constant term (b20) was – 100.0 dB at 38 kHz, – 93.0 dB at 120 kHz, and – 106.9 dB at 200 kHz, respectively.
Recently, wideband acoustic technology has been introduced and started to be used in fisheries acoustic surveys in various waters worldwide. Wideband acoustic data provides high vertical resolution, high signal-to-noise ratio and continuous frequency characteristics over a wide frequency range for species identification. In this study, the main characteristics of wideband acoustic systems were elaborated, and a general methodology for wideband acoustic data analysis was presented using data collected in frequency modulation mode for the first time in Republic of Korea. In particular, this study described the data recording method using the mission planner of the wideband autonomous acoustic system, wideband acoustic data signal processing, calibration and the wideband frequency response graph. Since wideband acoustic systems are currently installed on many training and research vessels, it is expected that the results of this study can be used as basic knowledge for fisheries acoustic research using the state-of-the-art system.
신재생 에너지 자원중 풍력발전은 비약적인 기술 발전과 시장 규모가 급속하게 성장하고 있다. 최근 육상풍력발전단지의 공간적 한계, 환경 문제 등으로 인하여 설치 공간이 해상으로 이동되었고, 더욱 풍부한 풍황 조건을 가진 깊은 수심에 설치되는 부유식 해상 풍력단지의 개발이 활발하게 진행되고 있다. 해상교통관점에서 해상풍력단지의 최적위치 선정은 선박과 풍력기들의 간섭을 최소화 하고 사고 확률이 적은 곳이며, 선박 밀집도가 낮은 해역이 최적위치로 선정된다. 본 연구에서는 유전 알고리즘 기반의 계절별 1주일 기간 선박자동식별장치 데이터를 유전자 및 염색체로 구성하였다. 80개의 유전자로 구성하고 유전 알고리즘의 적합도 평가를 거쳐 부유식 해상 풍력단지의 계절별 최적위치를 선정하였다. 더 나아가 계절별 최적위치 점수를 합산하여 최종 최적위치를 선정하였다. 분석 해역에서 최적위치는 11개로 나타났으며, 해상교통관점에서 유전 알고리즘을 통한 최적위치 선정이 적용 가능함을 확인하였다.