In this study, the fishery status of the octopus pot fishery in the east coastal sea were investigated, and the fishing performance of each pot shape was compared and analyzed. The fishery status survey was conducted through listening surveys at Jukbyeon Port, Uljin Port and Pohang Daebo Port in Gyeongbuk Province, and the amount of fishing gear used, fishing method, size and loss of octopus pot fishery was investigated. On the east coastal sea, octopus is one of the commercially important fish stocks and is caught in inshore pots, inshore combos, inshore gillnets and offshore pots. Among these fishing methods, pot fishing yields the highest catch. The shape of the pot differs depending on the region. In Uljin (Jukbyeon Port and Hupo Port), Gyeongbuk, rectangular type net pots are mainly used, and in Pohang (Daebo Port) in Gyeongbuk, drum-type pots are mostly used. Enteroctopus dofleini accounts for more than 90% of the catch of octopus. For the octopus fishing performance test by trap type, three types of traps (rectangular pot, drum pot and cylinder pot) were used on the coastal sea of Pohang Daebo. As a result, the total catch by pot shape was shown in the order of rectangular-type pot > drum-type pot > cylinder-type pot. The catch of octopus, the target species, was in the following order: rectangular-type pot > drum-type pot > cylinder-type pot. Such result shows a significant difference (Mann-Whitney test, p<0.05).
As a series of basic research to draw the pilot design measures for developing the habitat apparatus of Sulculus diversicolor supertexta inhabiting the coastal area of Jeju island, this study conducted a water tank experiment to understand the habitat marine environment of Sulculus diversicolor supertexta and the preference of habitat space focusing on the research fisheries performing the discharge of marine products. In the composition degree of marine algae in both fisheries, Donggwi-ri showed the highest gulfweed (79.3%) as brown algae and there were some coralline algae (17.2%) as red algae. Hansu-ri yielded the highest gulfweed (48.1%) as brown algae, which was followed by sea lettuce (10.4%) as green algae. In the preference of habitat space, the shelter angles 40° showed the highest adhesion as number of 82.9, which was followed by 60° and 70° as 69.2 and 68.2 respectively (P<0.05) by reviewing the environmental characteristics of habit of Salculus diversicolor supertexta in the coastal fishery of Jeju Island, when considering the adhesion rate in each of five shelters with different angles. In the future, there should be continuous research and monitoring for designing the fish shelters suitable for the coastal fisheries of Jeju island, and it would be also necessary to add the field-centered sustainable concrete research.
The purpose of this study is to provide information about annual variations in catch size and changes in reproductive biology in the common octopus, Octopus vulgaris, a commercially important species in Jeju Island. Samples were collected from coastal waters of Jeju Island, Korea by coastal trap fishery from January to November 2021. Octopus vulgaris have been decreasing in this region since 1984. The mantle length (ML) ranged from 4.5 to 17.8 cm and body weight (BW) ranged form 88.5 to 2,657.5 g. A χ 2 -test revealed that the number of males was significantly greater than females (χ 2 = 32.712, df = 10, P<0.05). Mature females were found from January to July and male occurred January to August. The gonadosomatic index value was higher from July to August than other months. The relationship between mantle length and body weight was BW = 2.4527ML 2.3139 (female) and BW = 2.6785ML 2.3159 (male). At 50% group maturity, female and male average weight was estimated to be 554.7 g and 330.6 g, respectively.
Density and sound speed contrasts (g and h , respectively), and swimming angle were measured for sandfish (Arctoscopus japonicus) without swimbladder. The density contrast was measured by the volume displacement method while the sound speed contrast was measured by the acoustic measurements of travel time (time-of-flight method). The swimming angle was measured by dividing it into daytime, nighttime, daytime feeding and nighttime feeding. The g was 1.001 to 1.067 with an average (± standard deviation) of 1.032 (± 0.017), and the h was 1.007 to 1.022 with an average (± standard deviation) of 1.015 (± 0.003). The swimming angles (mean ± standard deviation) were 16.8 ± 10.3° during the daytime, 1.9 ± 12.3° during the nighttime, 30.2 ± 12.6° in the daytime feeding and 35.0 ± 13.2° in the nighttime feeding. These results will provide important parameters input to calculate theoretical scattering models for estimating the acoustic target strength of sandfish.
Recently, wideband acoustic technology has been introduced and started to be used in fisheries acoustic surveys in various waters worldwide. Wideband acoustic data provides high vertical resolution, high signal-to-noise ratio and continuous frequency characteristics over a wide frequency range for species identification. In this study, the main characteristics of wideband acoustic systems were elaborated, and a general methodology for wideband acoustic data analysis was presented using data collected in frequency modulation mode for the first time in Republic of Korea. In particular, this study described the data recording method using the mission planner of the wideband autonomous acoustic system, wideband acoustic data signal processing, calibration and the wideband frequency response graph. Since wideband acoustic systems are currently installed on many training and research vessels, it is expected that the results of this study can be used as basic knowledge for fisheries acoustic research using the state-of-the-art system.
As a method to understand the ecological habits around the artificial reef, various reports such as fishing gear survey, diving, sound survey, underwater CCTV and camera, etc. are reported. Among them, the sound survey method is carried out by installing an acoustic system on the ship and can be investigated regardless of the marine environment such as time constraints and turbidity. Such method, however, takes a lot of manpower and time as the ship travels at a constant speed. Investigations around artificial reefs are being conducted in an artificial way, and a lot of time and labor are consumed as such. Maritime buoys have been operated for various purposes such as route signs, weather observation, marine environment monitoring and defense monitoring for navigation safety in the past, but studies on monitoring systems for ecological habits and distribution of fish using marine buoys are remarkably insufficient. Therefore, this study aims to develop a system that allows users to directly monitor fish group detector data by estimating the distribution of fish groups around artificial reefs and using wireless communication at sea. In order to confirm the suitability of the maritime buoy used in this study, it was operated to compare data using LTE-equipped buoys capable of wireless communication and a data logger-type system buoy. Data transmission of buoys capable of LTE communication was carried out in a 10-minute ON, 10-minute OFF method due to the limitation of the power supply capacity, and data of the data logger-type buoy received full data. We compared and analyzed the data received from the two fish detectors. It is expected that real-time monitoring of the wireless buoy detection device using LTE will be possible through future research.
A telesounder is a device that can monitor the appearance of fish in the sea on land and store fish detection data. This study was conducted to monitor the appearance of fish resources in coastal or near seas by using LTE communication for data transmission of the telesounder. The purpose of this study was to develop a prototype telesounder that can monitor the appearance of fish groups in the waters about 50 km away from the coast and store fish detection data. In this study, the prototype telesounder including a fish finder, communication device and battery for stable operation at sea was developed. The stability of telesounder buoy, data transmission/reception and expected use time were investigated. The expected use time of the telesounder using LTE communication with a lithium battery (12 V, 120 Ah) was about 274 hours under the conditions of 10 minutes off and 10 minutes on, about 520 hours under the conditions of 30 minutes off and 10 minutes on, and about 142 hours under continuous conditions. As a result of the sea test, it was found that the telesounder can be used in the sea area moved about 34 km from the land and the telesounder buoy was evaluated to have secured basic stability (buoyancy balance, waterproof, antenna strength, etc.) for operation in a marine environment.
Flow prediction was carried out through observational survey and three dimensional multi-layered numerical diagnostic model experiment to clarify the time and spatial structure of tidal current and residual flow dominant in the sea exchange and material circulation of the waters around Geumo Islands in the southern waters of Korea. The horizontal variation of tidal current is so large that it causes asymmetric tidal mixing due to horizontal eddies and the topographical effect creating convergence and dispersion of flow direction and velocity. Due to strong tidal currents flowing northwest-southeast, counterclockwise and clockwise eddies are formed on the left and right sides of the south of Sori Island. These topographical eddies are created by horizontal turbulence and bottom friction causing nonlinear effects. Baroclinic density flows are less than 5 cm/s at coastal area in summer and the entire sea area in winter. The wind driven currents assuming summer and winter seasonal winds are also less than 5 cm/s and the current flow rate is high in winter. Density current in summer and wind driven current in winter have a relatively greater effect on the net residual flows (tidal residual current + density current + density driven current) around Geumo Islands Sea area.
This study analyzed the allocation of the skipper’s attention during fishing operation in the wheelhouse of a Korean coastal composite fishing vessel by using video observation. To summarize the results, the ratio of lookout, radar and GPS monitoring, which is essential for prevention of collision at sea, was significantly lower than that of other fishing operation due to the attention concentration on the work place during hauling line. In order to reduce exposure to risk of collisions due to concentration of attention to certain tasks such as line hauling, it is necessary to develop an alert system that can notify the approach of other ships or obstruction throughout the ship using information from radar or the automatic identification system. In addition, the order of attention allocation to devices and facilities obtained in this study is expected to be used as basic data for device or facility layout based on the principle of usage frequency in designing wheelhouse for coastal composite fishing vessels in the future.
Fisheries is known as a high-risk industry in Korea, and various efforts have been made to reduce occupational accidents. Trap fisheries represent crustacean production, accounting for 4.7% of total fisheries production and 10.7% of its production value, which is classified as a relatively high-risk industry. With the disaster insurance payment data of the National Federation of Fisheries Cooperatives (NFFC) from 2016 to 2020, the accident rate of the entire fishery, the accident rate of trap fisheries, and the type of disasters in the past five years were analyzed. As a result, the average fishery accident rate for the past five years was 5.31%, but it was high at 6.15% for coastal trap fisheries and 5.59% for offshore trap fisheries. Slips and trips, struck by objects and contact with machinery were the most common types of the accident according to the characteristics of the work, and hand injuries were analyzed the most. Additional efforts, including education for accident prevention, development of personal protective equipment and improvement of the working environment, are needed to prevent accidents caused by repeated types of disasters.