The United States enforces the seafood import regulations so-called the Marine Mammal Protection Act (MMPA), and by 2023, all exports of aquatic products and processed fish products by fisheries which have not obtained an “Comparability Finding” from the National Oceanic and Atmospheric Administration will be completely banned. Therefore, to respond to the US MMPA, it is critical to identify technologies and methods used in worldwide for reducing bycatch of marine mammals. In particular, marine mammals are frequently caught in five fisheries (trawl, gill net, trap, stow net and set net) in Korea, which is facing a great challenge. This study presented bycatch reduction methods by five fisheries, classified the methods by country, and suggested appropriate reduction methods which can be applied in Korea.
This study aimed to identify the actual catch situation of offshore dredge gear which is newly regulated in the legislation. It’s also conducted to identify the species composition, weight of the catch including the target species and incidental catches, and to provide the basic information necessary for the resource management of aquatic organisms caught by offshore dredge. During the investigation period (from September 2022 to May 2023), a total of 61 species appeared in the test operation sea of Boryeong, Chungcheongnam-do and Gunsan, Jeollabuk-do, with 31 species of fishes, 11 species of malacostraca, six species of gastropoda, five species of bivalvia, three species of cephalopoda, three species of asteroidea, one species each of asteroidea and holothuroidea appeared. According to the results of the test operation conducted in September and November 2022, the non-catch season of Atrina (Servatrina) pectinata, 1,203 shellfishes were caught out of 2,979 caught in number, showing a bycatch rate of 59.6%, and by weight, 157.9 kg of shellfish was caught out of the total catch of 448.4 kg, showing a bycatch rate of 64.8%. On the other hand, in February and May 2023, the catch season for Atrina (Servatrina) pectinata, 3,692 fishsells were caught out of the 4,232 catches in total, showing a bycatch rate of 12.8%, and by weight, 1,185.0 kg of shellfish was caught out of the total catch of 1,293.2 kg, showing an 8.3% bycatch rate.
Long term variations of fish assemblage in the coastal waters of Bukchon-ri were determined using samples collected by trammel net from 2012 to 2022. Water temperature increased by 0.4℃ in 2022 that was less then 2012. During the survey period, a total of 95 species (53 families and 15 orders) of fishes were identified, Scorpaeniformes (five families and 22 species) and Perciformes (25 families and 39 species) accounted for 73% of the total number. The number of species was higher in summer than winter, showing a peak in summer at 66 species and lower in winter and autumn at 45 species. The number of individuals and the biomass peaked in summer at 1,238 individuals and 280.1 kg, and were the lowest in autumn at 597 individuals and 155.4 kg. The annual diversity index, evenness index and richness index were appeared 2.11-2.80, 0.64-0.80 and 4.70-7.34 at each years. The dominance index were appeared highest in 2014 while 2021 were appeared the lowest in 2017. The subtropical fishes were identified total of 38 species (40.0%) and the number of species was higher in 2022 at 22 (52.4%) species and lower in 2015-2017 at each 10 (31.3-37.0%) species. The dominant species of subtropical fishes were appeared rabbit fish (Siganus fuscescens), boxfish (Ostracion immaculatus), smallscale blackfish (Girella melanichthys), flag fish (Goniistius zonatus), stripey (Microcanthus strigatus), rock porgy (Oplegnathus punctatus), and bluestriped angelfish (Chaetodontoplus septentrionalis) in study sites.
In the last five decades, there has been a consistent decline in the total catch of fisheries in the Korean jurisdiction since the peak in 1986. The decline in catch slowed and slightly rebounded in the 2000s, but changed back to a decline in the 2010s. As indicators that can identify changes in the marine ecosystem, trophic level (TL), biodiversity index (H'), and the ratio between pelagic fish and demersal fish (P/D) were analyzed by each local marine ecosystem. There were some different changes in each local marine ecosystem, but the mean TL and H' decreased and P/D increased in general in Korean waters. Demersal fish, which were dominant in the 1970s and 1980s, declined, and small pelagic fish and cephalopods have dominantly changed since the 1990s. However, these changes are not simple, and they are fluctuating in complex ways relating to each marine ecosystem and the timing. It is believed that changes in marine ecosystems in Korean waters are likely caused by a combination of fisheries and climate change. The ecosystem indicators reflected a change in the total catch, a sharp drop in catch of demersal fish, and increasing catch of pelagic fish since the mid-1980s.
In this paper, among the various facilities used in marine farming, young bivalves of the Mytilus galloprovincialis of marine farming was placed on the deck of the fishing vessel to evaluate the environment conditions and drive shaft movement by rolling affecting the separator for the young bivalves and a clean process. There were a few studies on stress analysis of development facilities because it was difficult to access the fishing site due to the use of imported equipment and the lack of development of domestic equipment. In this study, stress analysis of the fixed part of separator for young bivalves and its adjacent part was performed on various phases when the vessel was tilted by rolling using the finite element method. In addition, the structural safety of the internal blade under the driving conditions according to the movement of the drive shaft by the hydraulic motor was confirmed through structural analysis. As a result, the connection part between the deck and the separator by rolling was confirmed to have higher stress than that of other parts due to stress concentration. In addition, it was confirmed that the maximum stress occurred on the connection part between blades. Even though the safety of the separator for marine farming was confirmed by structural analysis, it is necessary to comprehensively consider the age of vessels, the material of the deck, and the corrosion of the deck.
The aging fishery training vessels from the past have mostly been decommissioned, and many universities are introducing state-of-the-art large fishery training vessels. The purpose of these training vessels is to train marine professionals and above all, safety to prevent marine accidents should be of utmost priority as many students embark on the vessel. This study estimated the impact of the hydrodynamic interaction forces acting on the model vessel (fishery training vessel) from the bank when the vessel pass near the semi-circle bank wall in various conditions through the numerical calculation, especially concerning maneuvering motions of the vessel. For estimation, variables were mainly set as the size of the semi-circle shape, the lateral distance between the bank and the model vessel, and the depth near the bank. As a result, it was estimated that, in order for the model vessel to safely pass the semi-circle bank wall at a speed of 4 knots, the water depth to the vessel draft ratio should be 1.5 or more (approximately 8 m of water depth), and the lateral distance from the semi-circle bank wall should be 0.4 times the model vessel’s length or more (a distance of 34 m or more). Under these conditions, it was expected that the model vessel would pass without significantly being affected by the bank wall.
In the actual sea, the additional resistance due to external force such as wind, current and wave is accompanied, and the required power is added in response to these resistance. Especially when the ship is sailing at low speed, the effects of wind and current have a great impact on the safe control of the ship. Likewise, it is thought that the effects of wind and current have a great impact on the trawl ship control since the towing speed of a bottom trawl ship is a low speed of 3 to 4 knots. If the reduce of ship speed and the increase of engine power due to the influence of wind and current can be identified, the safe towing power can be calculated based on a given engine output. Thus, the appropriate size of a fishing gear can be determined. In this study, a total of 20 trawl operations were conducted for seasonal maritime research in the same research area according to the operation mode of propeller. Based on navigation data, trawl fishing data, and engine performance data acquired during the towing fishing gear, and data of ship speed, hull resistance, fishing gear resistance, wind force and current force according to an incidence angle were estimated. The overall power for these loads was calculated and compared with the measured engine power, and the effects of wind force and current force on the engine power were investigated.
In this study, the AHP (analytic hierarchy process) technique was used to analyze the risk of expected risk factors and fishing possibilities during gillnet fishing within the floating offshore wind farms (floating OWF). For this purpose, the risks that may occur during gillnet fishing within the floating offshore wind farms were defined as collisions, entanglements, and snags. In addition, the risk factors that cause these risks were classified into three upper risk factors and ten sub risk factors, and the three alternatives to gillnet fishing available within the floating OWF were classified and a hierarchy was established. Lastly, a survey was conducted targeting fisheries and marine experts and the response results were analyzed. As a result of the analysis, among the top risk factors, the risk was the greatest when laying fishing gear. The risk of the sub factors for each upper risk was found to be the highest at the berthing (mooring), the final hauling of fishing net, and the laying of the bottom layer net. Based on the alternatives, the average of the integrated risk rankings showed that allowing full navigation/fisheries had the highest risk. As a result of the final ranking analysis of the integrated risk, the overall ranking of allowing navigation/fisheries in areas where bottom layer nets were laid was ranked the first when moving vessels within the floating OWF was analyzed as the lowest integrated risk ranking of the 30th at the ban on navigation/fisheries. Through this, navigation was analyzed to be possible while it was analyzed that the possibility of gillnet fishing within the floating OWF was not high.
The IUU Fishing Index is composed of 40 indicators. These indicators were grouped by state responsibilities (flag, coastal, port, and general including market) defined in the FAO IPOA-IUU (2001) and then by type into vulnerability, prevalence, and response. A total of 152 coastal nations was surveyed. Korea's total combined IUU Fishing Index was 2.49 in 2019 and 2.91 in 2021, indicating a drop in the ranking to the third worst out of 152 countries followed by China and Russia in 2021. The indicators that increased the IUU fishing risk in 2021 compared to 2019 included seven indicators of prevalence and two indicators of response while those reducing the risk included one prevalence and one response indicator. The IUU Fishing Index revealed that many fisheries observers and monitoring, control and surveillance (MCS) practitioners active in the waters of RFMOs jurisdiction where Korean distant water vessels operate have mentioned concerns about the compliance with RFMO conservation measures or fishing practices. It suggested that strengthening management intervention in the fishing sector is needed. The primary tool for management is the MCS system. Given the logistical difficulty of oversight from land, air and at-sea, there is a need to enhance MCS strategies through logbook data, at-sea observer and electronic monitoring program. It also suggested that MSC fisheries certification and fisheries improvement projects, which are widely used for improving fishing sector performance, could contribute to the eradication of IUU fishing and the promotion of sustainable distant water fisheries.
As discarded fishing gear settles or floats on the seabed, it destroys the spawning and habitat of fisheries resources that causes various safety accidents and adverse effects on the environment, such as generating microplastics and causing ship accidents. In order to solve this problem, this study is intended to present an implementation plan for establishing a fishing gear deposit system in order to use it as basic data for establishing policies for fishing gear management in Korea. In order to successfully implement the fishing gear deposit system, the deposit system must be established in the form of fishing gear completed at the production stage. It was found that the marking of the object should be easy, and that determining an appropriate deposit amount to motivate the return of waste fishing gear and establishing a convenient return procedure for returned waste fishing gear were important factors. In addition, transparent management of unreturned deposits and mandatory use of fishing gear subject to the deposit system for fishermen will be necessary. The role of a specialized organization to manage and operate all of these procedures is also very important. It is necessary to establish a new mandatory provision in the Fisheries Act to require fishermen who directly use fishing gear to use fishing gear with a deposit refund mark, and to ensure the implementation of the deposit system by linking it with the evaluation items of government policy projects. Since the main purpose of the deposit system is to collect discarded fishing gear, a support plan will be necessary in accordance with the purchase project for fishing waste salvaged by local governments in 2020.
Conventional aquaculture faces declining productivity, shifting to recirculating aquaculture system (RAS), known for minimizing water usage and maintaining consistent water temperatures for year-round fish growth. Rainbow trout (Oncorhynchus mykiss), a globally important cold-water species and the third most farmed fish in inland waters of Korea, valued for its fecundity and rapid growth. Dissolved oxygen, an important environmental factor affecting fish production and economics, highlights the need for smart aquaculture practices. Since 2018, the rise of intelligent aquaculture platforms, incorporating information and communications technology (ICT), emphasizes the essential role of RAS implementation. This eight-week study aimed to determine the optimal dissolved oxygen concentration for rainbow trout in RAS, utilizing a device for continuous monitoring, control and record. Dissolved oxygen concentrations were set at 5-6 mg/L, 9-10 mg/L, 14-15 mg/L and 17-18 mg/L. The growth rate significantly decreased at 5-6 mg/L, with no significant differences in other experimental groups. In hematological analysis, growth hormone (GH) was significantly highest at 5-6 mg/L, followed by 9-10 mg/L while Insulin-like growth factor-1 (IGF-1) was significantly lowest at 5-6 mg/L. In conclusion, the optimal dissolved oxygen concentration for rainbow trout in RAS is approximately 9-10 mg/L. Higher concentrations do not contribute to further growth or profitability.
This study presents an analysis of bycatch data concerning Pacific white-sided dolphins (Lagenorhynchus obliquidens) along the Korean coast from 2016 to 2021. A total of 503 bycatches were examined, encompassing data on year, month, body length, sex, latitude (N), longitude (E), and fishing gear. Bycatch was the most frequent in waters with a longitude of less than 130°E, particularly in the southern coastal region at a latitude of 35.5°N, with a higher likelihood of bycatch in lower latitudes. Since 2017, a decreasing trend in bycatches has been observed. The sex distribution of bycaught dolphins showed a predominance of males (40%), followed by females (31%), with an unclassified category at 29%, though no statistically significant differences were found (p > 0.05). Seasonal analysis indicated that bycatch predominantly occurred during the winter months, with significant monthly variations (p < 0.01). Pacific white-sided dolphins were primarily ensnared in gill nets and, to a lesser extent, in stationary nets. Statistical analysis by gear type revealed a significant preference for gill nets (p < 0.001). Considering body length composition in relation to latitude, it is suggested that Pacific white-sided dolphins may utilize the southern waters of the East Sea as a potential nursery ground, though this was not confirmed at a significant level, emphasizing the need for further in-depth monitoring and ecological investigations. Given that there are approximately 27 different types of gill nets associated with the majority of bycatches, more detailed research is warranted to divide these gear types into finer subcategories for estimating bycatch relationships, ultimately leading to the development of effective conservation and management strategies.