민어 자망의 망목선택성 및 적정 망목을 추정하기 위하여 전남 신안구 임자도 인근의 해역에서 2002년 8월 10~8월 14일 및 2003년 8월 10일~8월 17일까지 시험조업을 실시하였다. 시험어구는 망목 129mm, 135mm, 144mm 및 150mm의 4종류의 자망을 각각 1폭씩 교호로 연결해서 12폭을 1조로 구성하여 2개조를 사용하였으며, 망목선택성 곡선의 분석에는 Kitahara(1968)의 방법을 이용하였다. 그 결과를 요약하면 다음과 같다. 1. 민어 자망의 시험조업 결과 총어획미수는 719마리였으며, 민어 526마리 (73.1%), 꽃게 168마리 (23.4%), 병어 17마리 (2.4%) 기타 8마리 (1.1%) 등이었다. 2. 망목선택성 곡선의 추정에서 최대 전장/망목(max. 1/m)의 값은 6.91으로 추정되었다. 3. 50% 선택구간에 대한 전장/망목(1/m)의 값은 5.62~8.03으로 추정되었으며, 그 선택폭은 2.41이었다. 4. 민어 자망의 적정 망목은 약 142mm로 추정되었으며, 민어의 50% 선택체장 범위는 798~1,140mm로 나타났다.
피뿔고동(통칭 소라) 통발의 망목선택성 및 적정 망목을 추정하기 위하여 2003년 6월 27일~6월 29일까지 전북 군산시 말도 인근 해역에서 시험조업을 실시하였다. 시험어구는 망목 35mm, 50mm 및 65mm의 3종류의 그물감을 씌운 통발을 교호로 각각 70개씩 210개를 1개조로 구성하여 2개조를 사용하였으며, 망목선택성 곡선의 분석에는 Kitahara(1968)의 방법을 이용하였다. 그 결과를 요약하면 다음과 같다. 1. 피뿔고동 통발의 시험조업 결과 총어획미수는 1,682마리였으며, 피뿔고동 1,268마리 (75.4%), 배꼽고동 225마리 (13.4%), 쥐노래미 113마리 (6.7%), 기타 76마리 (4.5%) 등이었다. 2. 피뿔고동의 최대 각고/망목(max. 1/m)의 값은 1.79로 추정되었다. 3. 50% 선택구간에 대한 각고/망목(max. 1/m)의 값은 1.79로 추정되었다. 3. 50% 선택구간에 대한 각고/망목(1/m)의 값은 1.24~2.72으로 추정되었으며, 그 선택폭은 1.48이었다. 4. 피뿔고동의 어획금지체장(각고) 50mm에 대한 적정 망목은 40.3mm로 추정되었으며, 피뿔고동의 50% 선택각고 범위는 50.0~109.6mm로 나타났다.
홑자망과 삼중자망에 의한 어획성능을 파악하기 위하여 한국 남해안의 거문도연안에 시설된 세라믹 어초어장에서 어구 성능시험과 수중 비디오 카메라로 어군 위집상을 조사로 하였다. 흩자망에 의한 폭당 어획량은 삼중자망에 비해 49.2% 많았으나, 어종수는 34.5% 적었는데, 이를 ANOVA로 분석한 결과 5% 유의수준에서 차이가 없었다. 어구별 우점종은 홑자망에서 참돔 1종, 삼중자망에서 참돔, 말쥐치, 홍어 등 3종이었으며, 홑자망에의해 어획된 참돔의 체장범위와 평균체장은 삼중자망에 어획된 참돔보다 다소 적게 나타났다. 홑자망에 의한 어획성능이 삼중자망보다 높았던 원인은 홑자망에 어획되기 쉬운 어종이 군을 형성하고 있었고, 개체의 크기도 홑자망에 적합하였기 때문이라고 판단된다.
한국 귀신고래 수중명음을 캘리포니아 귀신고래 수중명음과 비교하기 위하여, 먼저 캘리포니아 귀신고래의 수중명음을 분석하고 그것을 이전의 결과들과 비교, 고찰한 결과는 다음과 같다. 1. 귀신고래의 수중명음의 약 50%를 차지하고 있는 저주파로 울리는 소리(low frequency rumble)의 주파수는 최대 654Hz까지 변동하였고, 지속시간은 평균 570msec로 나타나, 이전 결과들과 비교하여 저주파로 울리는 소리의 주파수 변동범위는 일치하는 것으로 판단되었다. 2. 귀신고래의 체내 공기가 체외로 방출되면서 발생하는 것으로 추정되는 “꼴꼴꼴”거리는 소리(bubble type sounds)와 “똑똑”노크하는 듯한 소리(knocks)의 주파수 변동범위는 각각 24~1029Hz와 10~1291Hz였으며, 지속시간의 평균은 각각 1100msec와 1364msec를 나타내었다. “꼴꼴꼴”거리는 소리는 주파수 변동범위와 지속시간 모두 이전 결과들보다 높게 나타났으나, “똑똑”노크하는 듯한 소리는 거의 일치하는 것으로 나타났다. 3. 그 외 “띵”하는 소리(bong)의 주파수 변동범위는 34~213Hz이였고, 지속시간의 평균은 84msec이였다. 그리고 펄스(pulses)의 주파수 변동범위는 75~360Hz, 지속시간 평균은 873msec이였으며, “찍찍”거리는 소리(chirps)의 수중명음의 중심주파수는 120~200Hz, 지속시간은 80msec를 나타내었다.
종횡비, 다각형 모양에 따른 평판과 범포의 유체역학적 특성을 규명하고자 직사각형, 사다리꼴 모양으로 모형 평판과 범포를 제작하고 회류수조에서 양 · 항력 실험을 수행하였다. 그 결과를 요약하면 다음과 같다. 1. 직사각형 평판의 경우, 종횡비가 1 이하인 모형에서는 영각 40~42˚에서 최대 CL이 1.46~1.54, 1.5 이상인 모형에서는 20~22˚에서 10.7~1.11 정도였다. 직사각형 범포의 경우, 종횡비가 1 이하인 모형에서는 영각 32~40˚에서 최대 CL이 1.75~1.91, 1.5 이상인 모형에서는 18~22˚에서 1.248~1.40 정도였다. 같은 직사각형 모형에서는 범포가 평판보다 CL은 크게, 양항비는 작게 나타났다. 2. 사다리꼴 범포의 경우, 종횡비가 1.5 이하인 모형에서는 영각 34~44˚에서 최대 CL이 1.65~1.89, 2인 모형에서는 14~48˚에서 CL이 약 1.00 전후였다. 역사다리꼴 범포의 경우, 종횡비가 1.5 이하인 모형에서는 영각 24~36˚에서 최대 CL이 1.57~1.74, 2인 모형에서는 18˚에서 1.21이었다. 같은 사다리꼴 범포 모형에서는 전자의 모형이 후자보다 CL은 조금 크게, 양항비는 작게 나타났다. 3. 모형에서 물의 유체력을 많이 받을 수 있는 곳에서 만곡꼭지점이 만들어지며, 직사각형, 사다리꼴 모형에서는 종횡비가 클수록, 역사다리꼴 모형에서는 종횡비가 클수록, 역사다리꼴 모형에서는 작을수록 만곡꼭지점의 위치도 컸다. 4. 만곡도는 전 모형에서 종횡비가 클수록 컸으며, 직사각형, 사다리꼴 모형에서 영각의 클수록 컸고 직사각형 모형이 사다리꼴 모형보다 컸다.
종횡비, 다각형 모양에 따른 평판과 범포의 유체역학적 특성을 규명하고자 직사각형, 사다리꼴 모양으로 모형 평판과 범포를 제작하고 회류수조에서 양 · 항력 실험을 수행하였다. 그 결과를 요약하면 다음과 같다. 1. 삼각형 평판의 경우, 종횡비가 1 이하인 모형에서는 38~42˚에서 최대 CL이 1.23~1.32, 1.5 이상인 모형에서는 20~50˚에서 CL이 약 0.85 전후였다. 역삼각형 평판의 경우, 종횡비가 1 이하인 모형에서는 영가가 36~38˚에서 최대 CL이 1.46~1.56, 1.5 이상인 모형에서는 22~26˚에서 1.05~1.21 정도였다. 같은 삼각형 평판 모형에서는 전자의 모형이 후자보다 CL이 작게, 양항비도 작게 나타났다. 2. 삼각형 범포의 경우, 종횡비가 1 이하인 모형에서는 영각 46~48˚에서 최대 CL이 1.67~1.77, 1.5 이상인 모형에서는 20~50˚에서 CL이 약 1.1 전후였다. 역삼각형 범포의 경우, 종횡비가 1 이하인 모형에서는 영각 28~32˚에서 최대 CL이 1.44~1.68, 1.5 이상인 모형에서는 18~24˚에서 10.3~1.18 정도였다. 같은 삼각형 범포 모형에서는 전자의 모형이 후자보다 CL은 크게, 양항비는 작게 나타났다. 3. 모형에서 물의 유체력을 많이 받을 수 있는 곳에서 만곡꼭지점이 만들어지며, 삼각형 모형에서는 종횡비가 클수록, 역삼각형 모형에서는 작을수록 만곡꼭지점의 위치도 컸다. 4. 만곡도는 전 모형에서 종횡비가 클수록 컸으며, 삼각형 모형에서는 영각이 클수록 컸고 역삼각형 모형에서는 작을수록 컸다.
어류 축양을 목적으로 외해에 설치되는 대형 가두리 시설은 해양환경 조건으로부터 다양한 외력을 받으며, 이러한 외력에 의한 가두리의 동태는 가두리 시설 자체의 안전과 축양물의 생존과 성장에도 큰 영향을 준다. 그러므로 가두리를 설계하는 단계에서 외력에 의한 가두리의 역학적 움직임을 정확히 파악할 수 있다면 보다 안전하고 효율성 있는 구조물을 설치 할 수 있을 것이다. 본 연구에서는 원형 가두리에 대하여 조류에 따른 가두리의 동역학적 운동을 해석하기 위하여 이론 모델을 구성하여 수치해석을 하였다. 이 때 수조실험을 통해 흐름에 놓여지는 망지의 여러 조건에 따른 망지 후방의 유속감소율을 적용함으로써 수치계산의 정확도를 높였다. 또한 수치 계산에 의한 시뮬레이션의 결과와 모형 실험에 의한 결과를 비교 분석하였다. 본 연구에서 얻어진 결과를 요약하면 다음과 같다. 1. 유속이 일정할 때 망지의 d/1가 커질수록 망지를 통과한 후의 유속은 감소하였다. 2. 망지의 d/1가 일정할 때, 유속이 커질수록 망지를 통과한 후의 유속은 증가하였다. 3. 망지의 d/1와 유속이 일정할 때, 망지로부터의 영각이 커질수록 망지를 통과한 후의 유속은 감소하였다. 4. 평면 망지 실험에서 얻어진 유속감소율을 적용한 시뮬레이션에 의한 수종 형상과 모형 실험에 의한 가두리의 수중 형상을 비교한 결과, 오차는 ± 5 % 이내로 나타나 실험결과에 대한 시뮬레이션의 결과가 잘 일치함을 나타내었다.
The power and scale of 950 hPa typhoon "Maemi" which struck the shore of Gosung in Kyungnam Province was same as that of 951 hPa typhoon "Saraho" in 1959. For the purpose of getting the safety of training ship "KAYA", we anchored at Jinhae Bay with riding at two anchors paid out 8 shackles of cable respectively. By the way when wind force being over 30m/s, we could not keep the safety of the ship "KAYA" by means of the holding power of an anchor only. Just by using the main engine moderately, we were able to maintain the security of the ship. The holding the main engine moderately, we were able to maintain the security of the ship. The holding power of an anchor according to the way of anchoring, the quality of sea bottom, the direction and speed of wind and current, and the length of an anchor cable were analyzed. The obtained results are summarized as follows : 1. When riding at two anchors rather than lying at single anchor we could get a good holding power. 2. There was a big difference in holding power according to the quality of the bottom. 3. It would be best anchoring in a soft mud area than in any other place as possible. 4. It would also be desirable to set anchor shackles much more than equipment number prescribed in regulation in order to get safety of a ship providing against typhoon.
After studying the composition about the torsional shafting of main engine for fishing vessel with Power Take Off (PTO) System, the authors made a computer program using the transfer stiffness coefficient method (TSCM) for analyzing torsional vibration about the shafting with PTO system and nonlinear elastic coupling. The torsional shafting of main engine was separated by 3 types according to the connecting. The torsional shafting of main engine was separated by 3 types according to the connecting condition of main engine with propeller or the PTO system or both of them. In this paper, the change of natural frequencies and natural modes according to connecting condition of torsional shafting and nonlinear elastic coupling were analyzed. The accuracy of the TSCM was confirmed by comparing with the computational results of the Finite Element Method.