This study surveyed the fishing efficiency for Japanese common squid based on improvements made to LED fishing lamps by utilizing the training ship of Gangwon Provincial College. The training ship, Haesong-ho (24 tons), was equipped with seventy-two 150W electric power LED fishing lamps (10.8kW), and their fishing efficiency and fuel consumption level were surveyed for a total of ten times during the period between June 15, 2009 and July 27, 2009. In addition, the training ship was equipped with seventy-one 300W electric power LED fishing lamps (21.3kW) and their fishing efficiency and fuel consumption level were surveyed for a total of five times during the period between January 17, 2010 and August 4, 2010. In order to compare the fishing efficiency of LED fishing lamps, the catch of another fishing vessel equipped with Metal Halide (MH) fishing lamps of 120kW for the same period and at the same fishing grounds. The fuel consumption levels during the fishing operation of Haesong-ho was about 1,047.7 liters which was approximately 19.9% of the total fuel consumption level of 5,262.6 liters, and the fuel consumption level per operation hour was on average 9.2 liters. The number of Japanese common squid caught by the LED fishing lamp-equipped fishing vessel ranged from 12 to 1,640 squid for each fishing trial and the average quantity was 652. The number of Japanese common squid caught by the MH fishing lamp-equipped 10 fishing vessels ranged from 40 to 4,800 squid and the average quantity was 2,055. The fishing of Japanese common squid was done by the use of hand lines and an automatic jigging machine. The number of Japanese common squid caught per hand line and a single roller of the automatic jigging machine was in the proportion of 50.8% to 49.2% with respect to the LED fishing lamp-equipped fishing vessel. However, the number of Japanese common squid caught per hand line and a single roller of the automatic jigging machine was in the proportion of 86.4% to 13.6% with respect to the MH fishing lamp-equipped fishing vessel where most of the catch was made by hand lines. On the other hand, in comparing the number of Japanese common squid caught per automatic jigging machine, the number of squid caught by the LED fishing lamp-equipped fishing vessel was about the same or greater than the number of squid caught by the MH fishing lamp-equipped fishing vessel.
Fuel consumption in fisheries is a primary concern due to environmental effects and costs to fishermen. Much research has been carried out to reduce the fuel consumption related to fishing operations. The fuel consumption of fishing gear during fishing operation is generally related to hydrodynamic resistance on the gear. This research demonstrates a new approach using numerical methods to reduce fuel consumption. The results from the simulation were verified with results that mirrored the model experiments. By designing the fishing gear using drawing software, the whole and partial resistance force on the gear can be calculated as a result of simulations. The simulation results will suggest suitable materials or gear structure for reducing the hydrodynamic forces on the gear while maintaining the performance of the gear. Furthermore, the efficiency of low energy used trawl as economic point of view will be dealt. This research will helpful to reduce the GHG emissions from fishing operations and lead to reduce fishing costs due to fuel savings.
The properties of sediment collected from seabed surface to 6cm depth on the four positions were analyzed to investigate turbulence of marine sediments by shrimp beam trawl. Types of sediments in the investigation area were (g)mS (slightly gravely muddy sand) and gmS (gravely muddy sand) showing high sand content, and (g)sM (slightly gravely sandy mud), gsM (gravely sandy mud) as well. It is estimated that position is more crucial factor than seasonal difference for the granularity variation of sediment in each investigation area. Finding the positional characteristics of sediment granularity was difficult before removing shells and organic matter. However, the average granularity is getting larger by going out from inland sea to open sea once those were removed. The granularity of marine sediment got narrow after processing in the fishing area for shrimp beam trawl but there was no big difference for granularity size before and after processing in the non-fishing area. This might be attributed to crushed shell particles going up and down again on the surface in the fishing area. To demonstrate the hypothesis mentioned above, the sediments driven by shrimp beam trawl need to be collected and analyzed.
Reproductive ecology of the sharp toothed eel, Muraenesox cinereus was investigated based on the samples captured in southern Korean waters from January 2010 to December 2011. Gonadosomatic index began to increase in April, and reached maximum between July to August. After spawning it began to decrease from October. Reproductive season was estimated to April-September, with peak in July. Fecundity was proportional to the size of the female, with the clutch size varying from 56,000 eggs in the smallest female (anal length, 27.0cm) to 1,400,000 eggs in the largest (anal length, 49.5cm). Size at 50% sexual maturity (AL50), determined from mature females, were 21.9cm. Annual reproductive cycles of this species could be divided into four successive stages; immature stage (October-February), maturing stage (March-May), mature stage (June-August) and spent stage (August-October).
This paper describes the remote monitoring of breaking ocean waves generated by Typhoon Nabi, whose name means butterfly in Korean, using a marine X-band radar in the Yongho Man, Busan, Korea. The basic purpose of this study is to investigate the dynamic behavior and to estimate the periods of breaking waves across the surf zone from radar image sequences. In these experiments, the land-based radar system imaged the inshore zone of three miles from the coastline to a isobath of 30 meters. The wave period and the dominant wave direction for breaking ocean waves extracted directly from radar image sequences were 157.4 meters and 298 degrees, respectively. However, the result calculated quantitatively by the continuous wavelet transform (CWT) showed that the period of breaking waves was 154.3 meters. The average difference in breaking wave periods between the value extracted by using EBRL (electronic bearing and range line) of radar and the calculated value by CWT was 3.1 meters, showing that the CWT method is also accurate. These results suggest that a marine X-band radar system is a viable method of monitoring the breaking ocean waves.
The efficiency tests of automatic positioning transmitter (APT) using satellite on life jacket were carried out to minimize casualties of fishermen and to make system optimization for effective SAR (Search and Rescue) operation. As the result of the tests, average position was equaled on the comparison between SPOT using low earth orbit satellite and DGPS (Differential Global Positining System), but standard deviation of DGPS for latitude and longitude were 66.4% and 46.3% smaller than those of SPOT. The position precision of SPOT was almost two times lower than LGT using geostationary satellite to compare 95% circular error probability. However, the success rate of receiver for SPOT was revealed as 86.5~94.1% on the experiments in the South Sea and the West Sea and it was 4.5 times higher than LGT. Therefore, SPOT is expected to contribute greatly to the rapid rescue of victim.
The Nemopilema nomurai a very large jellyfish that has been found in the East China Sea and is now are migrating to Korea and Japan. To investigate the occurrence of N. nomurai based on the changing marine environment of the East China Sea, we conducted field survey in the early summer from 2006-2008. We observed the marine environment using CTD and the occurrence of N. nomurai using FMT and bottom trawling. We caught the most N. nomurai in 2007 and the fewest in 2008 and environment factors influencing its are more sensitive temperature than salinity. Large quantities of N. nomurai with a small bell diameter were caught in 2007 and large individuals with a significant bell diameter were caught in 2008. This appeared which between the catch and bell diameter of N. nomurai had (-) correlation (R=-0.988, p=0.098). Meanwhile, the spatial distribution of N. nomurai concentrations in lower salinity mixed seawater inflow in Changjiang Diluted Water.
The Nemopilema nomurai is a large jellyfish attaining a weight of 200 kg and bell diameter of 2 m when fully grown. To prevent damage to this species, this study determined the acoustic characteristics of N. nomurai using frequencies 38 and 120 kHz. The CPUE of N. nomurai and the averaged SV of 38 and 120 kHz had a lower (+) correlation coefficient and relationship at 120 kHz (R=0.51) than at 38 kHz (R=0.15) was significant. In addition, the averaged SV at 120 kHz was higher than at 38 kHz. The δMVBS120-38 in section catches ≥97.8% wet mass of N. nomurai was -2.2 to 5.6 dB. The δTS120-38 in situ TS was extracted in sections catches of only N. nomurai by FMT. It was found that the averaged in situ δTS120-38 were at 0.6 and 0.1 dB. Furthermore, it results showed a close relationship between the bell diameter and TS of N. nomurai. The dominance of smaller N. nomurai (11.0~20.0 cm bell diameter in the air) corresponded to a similar proportion of low TS values (-69.0~-65.0 dB). A small number of larger N. nomurai (25.0~38.0 cm bell diameter in the air) were collected, in which TS values were the highest (-62.0~-58.0 dB).
Marine caused pollution occurs mostly near coastal area and its main cause was known to be human feces issued from small vessels. To sterilize liquid pollutants from portable toilets of small vessels, an electrolysis treatment is judged to be the most economic and stable method considering an environment of its use. In this paper, we presents an electrolysis apparatus which is the most appropriate for sterilizing pollutants from portable toilets of small vessels and derives the minimum operating time of the apparatus for sterilizing norovirus which is a main target of marine caused pollution sources. In order to utilize renewable energy, we designed an apparatus which generates a renewable energy from solar cells. As a result, we could confirm the applicability of the proposed system with the results from experiments in three cases of different weather conditions.
The characteristics of abrasive wear on sliding speed of glass fiber reinforcement (GF/PUR) composites were investigated at ambient temperature by pin-on-disc friction test. The cumulative wear volume, friction coefficient and surface roughness of these materials on sliding speed were determined experimentally. The major failure mechanisms were lapping layers, deformation of resin, ploughing, delamination, and cracking by scanning electric microscopy (SEM) photograph of the tested surface. As increasing the sliding speed the GF/PUR composites indicated higher friction coefficient. The surface roughness of the GF/PUR composites was increased as the sliding speed was higher in wear test.
Species composition and abundance of larval fishes in the coastal waters off Gori in the southeastern Korea were investigated from January to December in 2006. During the study period, 32 larvae species belonging to 20 families were collected. The dominant species were Engraulis japonicius, Hexagrammos agrammus, Sillago japonicus, Acropoma japonicum, Apogon lineatus, and Konosirus punctatus. These six species accounted for 87.0% of the total number of individuals collected. The number of species, number of individuals, and species diversity indices fluctuated by season. The peak numbers of species and individuals occurred in July and May, respectively. Correlation analysis showed that monthly variations in water temperature and salinity could act as an indicators of seasonal variations in the larval fish community structure and abundance of the dominant species; in particular, the abundance of S. japonicus, A. japonicum, and A. lineatus were significantly corrected with the water temperature.