Interviews and boarding surveys were conducted in order to understand the actual usage of octopus pot in the coastal composite fishery in Jeollanam-do. According to the results of the interviews conduced by visiting the areas (Goheung, Yeosu and Wando), the number of octopus pots per nine-ton vessel were 30,000-80,000, and the number of daily usage pots were 7,000-10,000. The number of octopus pots per four-ton vessel was 40,000, and the number of daily usage pots were 4,000. As a result of the survey on two octopus pot fishing boats (9.77-ton and 4.99-ton) in Yeosu area, the daily catch weight of 9-ton class vessel was the minimum of 66.9 kg and the maximum of 159.6 kg. The daily catch weight of the four-ton class fishing vessel was from 31.3 kg to maximum 85.6 kg. The average number of octopus pot used per day in the nine-ton class vessel was 6,821 (the minimum of 6,031 and the maximum of 7,697) and 3,181 (the minimum of 2,282 and the maximum of 3,878) in the four-ton class vessel.
Although mud shrimp (Upogebia Major) provides benefits on the tidal flat ecosystem, it is causing the mass mortality of Manila clam (Tapes philippinarum) and large economic loss to the aquaculture farmer due to spreading in the entire coastal clam farm area of the West Sea of Korea. In this study, a mud shrimp blocking box for cultivating clam was tested to prevent the mud shrimp from invading the habitat of the clam. To determine the effect of the blocking box, the growth characteristics of the clams under various culture conditions were investigated. The shell length, total weight, condition index, the presence of mud shrimp in the box, and the soil decay in the box were examined according to whether the clams were raised in the box or in natural state, whether the box is covered with a net or not and the gap size of the box. As a result, no significant differences in shell length, total weight, and condition index were found between the clam grown in the box and the natural state (P>0.05) without any evidence of invading of mud shrimp to the box. In addition, the soil inside the box was in good condition, not decayed. Therefore, using the mud shrimp blocking box, mud shrimp can be prevented from propagating to the habitat of the clam, thereby contributing to the normal production of the clam and thus to restoring the clam farming.
In this study, the conventional cylinder-shaped lower bar on the canvas was modified and its performance was tested to improve the opening force of the stow net on anchor. The improved new lower bar used in the test is consisted of 13 flat bars with a length of 1.8 m, a width of 0.075 m and a thickness of 4 mm, and a pipe with a length of 2.0 m and a diameter of 50 mm. A stow net with the improved lower bar and a stow net with an existing lower bar were installed underwater and their trajectories for 21 hours were examined. To confirm their trajectories, GPS loggers were attached to the buoys on the left and right canvases and the buoy of the hauling rope. As a result of the test, the rotation of the gear with the improved bar was smoother than that with the existing bar. As a result of comparing the changes in the interval of the buoys attached to the canvas after the low and high tide, the buoy spacing of the gear with the improved bar is wider than that of the conventional gear; moreover, the larger the interval, the smoother the rotation of the fishing gear was. Therefore, it is considered that using the improved lower bar can enhance the performance of the stow net.
In this study, the differences of holding power according to the shape and weight distribution of concrete weight used in shellfish shell fishery were investigated through the experiments. To investigate the differences in shape, five bar-shaped concrete weights with the same length and different cross-sectional shapes were produced. The sectional shape of each weight was square, triangle, circle, small cross, and large cross (SQ, TR, CI, CR-S, CR-L). Ten rectangular parallelepiped weights with different bottom area and cross-sectional area were produced. To investigate the differences by the weight distribution, the holding power on the square model (SQ) with six 50 g weights at different positions was investigated. All the holding power was obtained by measuring the tensile force generated when the concrete weight was pulled at a constant speed on the sand. As a result, there were no differences in holding power between the ten rectangular weights. However, the experiment on weights with different cross-sectional shapes showed differences in holding power. The holding power was higher in the order of CR-L > CR-S > CI > TR > SQ. In the weight distribution test, the holding power was higher as the front side of the weight was heavier. Generally, the frictional force is the same even if the shape is different, when two objects have the same value in the weight and the roughness. On the other hand, it seems to have a large impact when the shape of the bottom is deformed in the course of pulling the object. Particularly, the larger the degree of protrusion like cruciform weights, the more the holding power increased while deeply digging the bottom. It is also likely that the holding power increases as the front weight increases.
In this paper, numerical modeling is conducted to analyze the tension of an anchor line by varying the size and drag coefficient of a buoy when the trapnet is influenced by the wave and the current simultaneously. A mass-spring model was used to analyze the behavior of trapnet underwater under the influence of waves and current. In the simulation of numerical model, wave height of 3, 4, 5 and 6 m, a period of 4.4 s, and the flow speed of 0.7 m/s were used for the wave and current condition. The drag coefficients of buoy were 0.8, 0.4 and 0.2, respectively. The size of buoy was 100, 50 and 25% based on the cylindrical buoy (0.0311 ㎥) used for swimming crab trap. The drag coefficient of the trapnet, the main model for numerical analysis, was obtained by a circular water channel experiment using a 6-component load cell. As a result of the simulation, the tension of the anchor line decreased proportional to buoy’s drag coefficient and size; the higher the wave height, the greater the decrease rate of the tension. When the buoy drag coefficient and size decreased to one fourth, the tension of the anchor line decreased to a half and the tension of the anchor line was lower than the holding power of the anchor even at 6 m of wave height. Therefore, reducing the buoy drag coefficient and size appropriately reduces the trapnet load from the wave, which also reduces the possibility of trapnet loss.
This study aims to investigate effects of the length of the buoy and sand bag line on the loss of webfoot octopus pot. A numerical modeling and simulation was carried out to analyze the process that the pot gear affected by wave using the mass spring model. Through the simulation, tensions of sand bag line under various condition were investigated by length of buoy and sand bag line. The drag force and coefficient k of an artificial shell used in the webfoot octopus pot was obtained from an experiment in a circular water channel, and the coefficient k was applied to the simulation. To verify the accuracy of the simulation model, a simple test was conducted into measuring a rope tension of a hanging shell under flow. Then, the test result was compared with the simulation. The lengths of the buoy line in the simulation were 1.12, 1.41, 1.80, 2.23, 2.69, and 3.17 times of water depth. The lengths of sand bag line were 10, 20, 30, and 40 meters, and conditions of water depth were 8, 15, 22 meters. 4 meter height and 8 second period of wave were applied to all simulations. As a results, the tension of the sand bag line was decreased as the buoy and sand bag line were increased. The minimum tension of the sand bag line was appeared in conditions that the length of the buoy line is twice of water depth and the sand bag line length is over 40 meters (except in case of depth 8 meters.).
This study aims to reduce the force exerted to the buoy of the gillnet by wave and current. Five buoy models were selected for experiments and their rope tensions under wave and current action were compared. Five models were EL (ellipsoid), EL-H (ellipsoid-hole), SL (streamlined body), SP (sphere) and CL (cylinder, traditional type). In the first experiment, the Five models were tested without any attachment. In the second experiment, a flagpole was attached to each model. As a result, in the condition without flagpole, the tensions of four models with the exception of the CL were about a half of that of the CL. In the condition with flagpole, the tension of all models was twice larger than that without flagpole. Thus, a new model was suggested to improve the problem, which has a combined body that of a flagpole and a buoy Three new models of CL-L (long and thin cylinder), LF (leaf shape) and LF-F (leaf shape with fin) were designed. Also a cylinder type (CLD) with a flagpole as a control was included in the experiment. As a result, the LF-F had the smallest tension and a half tension of the CLD. Therefore, it is supposed that the flagpole and buoy combined model could reduce the tension on buoy rope and contribute to improve the gillnet loss problem.
Spinyhead sculpin Dasycottus setiger, a species of cold water fish, is distributed along the eastern coastal waters of Korea. A series of fishing experiments was carried out in the waters near Uljin from June, 2002 to November, 2004, using the experimental monofilament gill nets of different mesh sizes (82.2, 89.4, 104.8, and 120.2 ㎜) to describe the selectivity of the gill net for the fish. The SELECT (Share Each Length’s Catch Total) analysis with maximum likelihood method was applied to fit the different functional models (normal, lognormal, and bi-normal models) for selection curves to the catch data. The bi-normal model with the fixed relative fishing intensity was selected as the best-fit selection curve by AIC (Akaike’s Information Criterion) comparison. For the best-fit selection curve, the optimum relative length (the ratio of fish total length to mesh size) with the maximum efficiency and the selection range (R50%,large - R50%, small) of 50% retention were obtained as 2.363 and 0.851, respectively. The ratios of body girth to mesh perimeter at 100% retention where the selection curve of each mesh size represented the optimum total length were calculated as the range of 0.86 ~ 0.87.
This study investigates the development of an automatic lightening buoy that can indicate an aquaculture cage at night or in rough weather. The energy for the light is generated by the linear motion of a magnet along with a coil inside the buoy as the waves cause the buoy to oscillate up and down. The principle of the magnet motion is different between the magnet and body of the buoy because the movement of the latter is dependent on the surface wave, while the former is affected by the damper. To obtain a quantitative performance of the buoy, the voltage as well as up and down motion produced by several waves were measured in the wave tank. A shorter wave period, i.e., faster motion, of the magnet produced a brighter light. It is expected that this study can aid in deciding the optimum design of a buoy capable of producing a bright light at any aquaculture site affected by sea or fresh water waves.
This study was conducted to analyze fishing capacity and bycatch by mesh size and entrance size of spring net pot conductedby water tank and field experiment. The water tank experiments were conducted by using traps with mesh size of 22 mm and entrance size of 120 mm and 140 mm, respectively in the water tank of NIFS. The field experiment was conducted using 5 kinds of spring net pot with mesh sizes of 20 mm, 22 mm, 35 mm and entrance size of 120 mm, 130 mm, 140 mm, 360 mm by coastal trap fishery vessel operating around the area of Geoje island. In the result of water tank experiments, the catch of conger eel was 1.5 times higher when using trap with entrance size of 140 mm than that of 120 mm. In the field experiment, when using same mesh size, the larger the entrance size, the higher amount of conger eel catch, bycatch and number of bycatch species. When using the same entrance size, the larger the mesh size, the lower amount of conger eel catch and number of bycatch species, whereas the amount of bycatch showed increasing trend.
Morotoge shrimp Pandalopsis japonica is caught by pot and others in the eastern coastal waters of Korea. Comparative fishing experiments were carried out in the eastern coast of Korea, using the dome–shaped pots with different five mesh sizes (17.1, 24.8, 35.3, 39.8, and 48.3 mm) in order to estimate the mesh selectivity of the pot for the morotoge shrimp, Pandalopsis japonica. The SELECT (Share Each Length’s Catch Total) analysis method was applied to the catch data. The master selection curve of the pot for the shrimp was estimated to be s(R) = exp(15.770R–10.573)/[1+exp(15.770R–10.753)], where R is the ratio of carapace length to mesh size. From the selection curves, the carapace lengths of 50% retention were 11.6, 17.0, 23.9, and 34.1 mm for 17, 25, 35, and 50 mm mesh–size pot, respectively. It means that the pots of larger mesh size allow more shrimp of small size to escape.
The 1/5 scale–down model of the Bycatch Reduction Device (BRD) from an Argentinean demersal trawl was tested in a circulating water channel. The BRD is designed to help small Hake (merluza, merluccius hubbsi) to escape from a trawl. It is settled in front of a trawl codend, and is equipped with selection grids that help small fish to escape from the gear and guiding panels that help fish to meet with the grids. Bars of the grids are wires covered by the PVC and other parts of the BRD are made of net. When the velocity was less than 0.65 m/sec (2.81 Kont when translated to real towing speed) which is slow speed compared with real towing speed, position between an upper guiding panel and an upper selection grid were good to help small fish to escape. When the velocity was more than 0.8 m/sec (3.41 Knot when translated to real towing speed) which is similar to and faster than real towing speed, it was considered that small fish may have difficulties in escaping because the gap was not enough between an upper guiding panel and an upper selection grid. The lower selection grid was sat on the bottom of the tank without an angle due to the weight that it carries. Improvements were proposed to position the panels and the grids better.
A series of field tests to estimate the size selectivity of monofilament and multifilament gill net for marbled sole, Pleuronectes yokohamae, were carried out 12 times with five different mesh sizes (86.6, 101.0, 121.2, 137.7 and 151.5mm) in the western sea of Korea from 2007 to 2009. The master selection curve was estimated by the extended Kitahara’s method. The total number of catch species was 23 and that of catch was 1,688 in the field tests. Marbled sole of total catch was 1,150 with 68.1 percent. In the monofilament trammel net, the optimum value of total length (TL) per mesh size (m) for 1.0 of retention probability was estimated 0.280 and the values of TL/m were estimated to be 0.187, 0.201, 0.210, 0.218 and 0.226 when the retention probability were 0.1, 0.2, 0.3, 0.4 and 0.5, respectively. In the multifilament trammel net, the optimum value of TL/m for 1.0 of retention probability was estimated 0.307 and the values of TL/m were estimated to be 0.195, 0.211, 0.222, 0.232 and 0.241 when the retention probability were 0.1, 0.2, 0.3, 0.4 and 0.5, respectively.