This study investigates the development of an automatic lightening buoy that can indicate an aquaculture cage at night or in rough weather. The energy for the light is generated by the linear motion of a magnet along with a coil inside the buoy as the waves cause the buoy to oscillate up and down. The principle of the magnet motion is different between the magnet and body of the buoy because the movement of the latter is dependent on the surface wave, while the former is affected by the damper. To obtain a quantitative performance of the buoy, the voltage as well as up and down motion produced by several waves were measured in the wave tank. A shorter wave period, i.e., faster motion, of the magnet produced a brighter light. It is expected that this study can aid in deciding the optimum design of a buoy capable of producing a bright light at any aquaculture site affected by sea or fresh water waves.