The Nemopilema nomurai is a large jellyfish attaining a weight of 200 kg and bell diameter of 2 m when fully grown. To prevent damage to this species, this study determined the acoustic characteristics of N. nomurai using frequencies 38 and 120 kHz. The CPUE of N. nomurai and the averaged SV of 38 and 120 kHz had a lower (+) correlation coefficient and relationship at 120 kHz (R=0.51) than at 38 kHz (R=0.15) was significant. In addition, the averaged SV at 120 kHz was higher than at 38 kHz. The δMVBS120-38 in section catches ≥97.8% wet mass of N. nomurai was -2.2 to 5.6 dB. The δTS120-38 in situ TS was extracted in sections catches of only N. nomurai by FMT. It was found that the averaged in situ δTS120-38 were at 0.6 and 0.1 dB. Furthermore, it results showed a close relationship between the bell diameter and TS of N. nomurai. The dominance of smaller N. nomurai (11.0~20.0 cm bell diameter in the air) corresponded to a similar proportion of low TS values (-69.0~-65.0 dB). A small number of larger N. nomurai (25.0~38.0 cm bell diameter in the air) were collected, in which TS values were the highest (-62.0~-58.0 dB).
The Nemopilema nomurai a very large jellyfish that has been found in the East China Sea and is now are migrating to Korea and Japan. To investigate the occurrence of N. nomurai based on the changing marine environment of the East China Sea, we conducted field survey in the early summer from 2006-2008. We observed the marine environment using CTD and the occurrence of N. nomurai using FMT and bottom trawling. We caught the most N. nomurai in 2007 and the fewest in 2008 and environment factors influencing its are more sensitive temperature than salinity. Large quantities of N. nomurai with a small bell diameter were caught in 2007 and large individuals with a significant bell diameter were caught in 2008. This appeared which between the catch and bell diameter of N. nomurai had (-) correlation (R=-0.988, p=0.098). Meanwhile, the spatial distribution of N. nomurai concentrations in lower salinity mixed seawater inflow in Changjiang Diluted Water.