In the last five decades, there has been a consistent decline in the total catch of fisheries in the Korean jurisdiction since the peak in 1986. The decline in catch slowed and slightly rebounded in the 2000s, but changed back to a decline in the 2010s. As indicators that can identify changes in the marine ecosystem, trophic level (TL), biodiversity index (H'), and the ratio between pelagic fish and demersal fish (P/D) were analyzed by each local marine ecosystem. There were some different changes in each local marine ecosystem, but the mean TL and H' decreased and P/D increased in general in Korean waters. Demersal fish, which were dominant in the 1970s and 1980s, declined, and small pelagic fish and cephalopods have dominantly changed since the 1990s. However, these changes are not simple, and they are fluctuating in complex ways relating to each marine ecosystem and the timing. It is believed that changes in marine ecosystems in Korean waters are likely caused by a combination of fisheries and climate change. The ecosystem indicators reflected a change in the total catch, a sharp drop in catch of demersal fish, and increasing catch of pelagic fish since the mid-1980s.
This study is aimed to compare stock assessment models depending on how the models fit to observed data. Process-error model, Observation-error model, and Bayesian state-space model for the Korean Western coast fisheries were applied for comparison. Analytical results show that there is the least error between the estimated CPUE and the observed CPUE with the Bayesian state-space model; consequently, results of the Bayesian state-space model are the most reliable. According to the Bayesian State-space model, potential yield of fishery resources in the West Sea of Korea is estimated to be 231,949 tons per year. However, the results show that the fishery resources of West Sea have been decreasing since 1967. In addition, the amounts of stock in 2013 are assessed to be only 36% of the stock biomass at MSY level. Therefore, policy efforts are needed to recover the fishery resources of West Sea of Korea.
This study is aimed to take a stock assessment of blackthroat seaperch Doederleinia seaperch regarding the fishing effort of large-powered Danish Seine Fishery and Southwest Sea Danish Seine Fishery. For the assessment, the state-space model was implemented and the standardized catch per unit effort (CPUE) of large powered Danish Seine Fishery and Southwest Sea Danish Seine Fishery which is necessary for the model was estimated with generalized linear model (GLM). The model was adequate for stock assessment because its r-square value was 0.99 and root mean square error (RMSE) value was 0.003. According to the model with 95% confidence interval, maximum sustainable yield (MSY) of Blackthroat seaperch is from 2,634 to 6,765 ton and carrying capacity (K) is between 33,180 and 62,820. Also, the catchability coefficient (q) is between 2.14E-06 and 3.95E-06 and intrinsic growth rate (r) is between 0.31 and 0.72.