검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 30

        1.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study developed and evaluated a load cell-based automatic weighing system for the automated harvesting of laver (Porphyra tenera) in seaweed aquaculture. The current manual harvesting process was compared with the load cell-based automated system, and quantitative measurements of time, distance, and weight were conducted. The results demonstrated that the load cell-based system reduced the unloading time and increased the throughput compared to the manual method. In addition, statistical analysis confirmed that there was no significant difference from the mean in the weight measurement obtained using the load cell-based system. Based on these findings, the load cell-based automatic weighing system holds potential for efficient production and transactions in laver cultivation, contributing to cost reduction and improving the quality of life for aquaculture workers.
        4,000원
        2.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Laver aquaculture, which occupies a large proportion in the aquaculture industry in Korea, is still highly dependent on human labor. Therefore, it is necessary to study the development of an automatic system to improve the working environment and increase the efficiency of aquaculture production systems. The purpose of this study is to evaluate the economic feasibility of an improved system in a study for the loading-unloading and automatic weighing systems in laver aquaculture industry. Economic analysis of the developed unloading and automatic weighing system were implemented under various conditions to calculate more accurate benefits and costs. As a result of this study, the economic feasibility was found to be very high in the three models: net present value (NPV), benefit-cost ratio (B/C), internal rate of return (IRR). Moreover, the results of sensitivity analysis showed that the economical efficiency of the automatic loading, unloading, and weighing system in laver aquaculture was very high.
        4,000원
        4.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Sensory evaluation of shucking pressure, pressure holding time, seeding method, difference in full shucking rate in the aquaculture area and shucking oyster was performed using an ultra-high pressure oyster shucking machine. The reaching time for each target pressure is 2.2-2.4 MPa/sec in the range of 180 MPa to 240 MPa. had a rate of pressure rise. There was a difference of 0.5-1.7℃ in the range of 24-27℃ in the seawater temperature before and after the pressure treatment inside the pressure vessel, but there was no specific increase or decrease in seawater temperature. When only the shucking pressure is increased without the pressure holding time, the critical shucking pressure at which the oyster shell is opened and the flesh is peeled in the range of 200 to 220 MPa. When the critical shucking pressure is reached, the oyster sample in the closed vessel is expected to be shucked by about 40%. If there is no pressure holding time when judged only by full shucking, an increase in pressure of about 1.5 MPa is required to further shuck 3% of the oyster population. The oyster samples cultivated in the south coast of Korea were subject to full shucking under the conditions of 220 MPa shucking pressure and two minutes (120 seconds) of pressure holding time, and the difference in the pressure of the oysters according to the oyster seeding method and the farming area was minute. Finally, the condition of 220 MPa of shucking pressure and three minutes of pressure holding time was the best at 1.52 when the result of the sensory evaluation performed manually was set to 1.0. Next was 1.4 under the conditions of 220 MPa of shucking pressure and one minute of pressure holding time (60 seconds), and 1.3 under the condition of 220 MPa and two minutes of pressure holding time (120 seconds). Therefore, it is considered that the most desirable shucking conditions, considering the efficiency and sensory evaluation results, are the conditions of 220 MPa shucking pressure and two to three minutes of pressure holding time.
        4,000원
        5.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As a method to understand the ecological habits around the artificial reef, various reports such as fishing gear survey, diving, sound survey, underwater CCTV and camera, etc. are reported. Among them, the sound survey method is carried out by installing an acoustic system on the ship and can be investigated regardless of the marine environment such as time constraints and turbidity. Such method, however, takes a lot of manpower and time as the ship travels at a constant speed. Investigations around artificial reefs are being conducted in an artificial way, and a lot of time and labor are consumed as such. Maritime buoys have been operated for various purposes such as route signs, weather observation, marine environment monitoring and defense monitoring for navigation safety in the past, but studies on monitoring systems for ecological habits and distribution of fish using marine buoys are remarkably insufficient. Therefore, this study aims to develop a system that allows users to directly monitor fish group detector data by estimating the distribution of fish groups around artificial reefs and using wireless communication at sea. In order to confirm the suitability of the maritime buoy used in this study, it was operated to compare data using LTE-equipped buoys capable of wireless communication and a data logger-type system buoy. Data transmission of buoys capable of LTE communication was carried out in a 10-minute ON, 10-minute OFF method due to the limitation of the power supply capacity, and data of the data logger-type buoy received full data. We compared and analyzed the data received from the two fish detectors. It is expected that real-time monitoring of the wireless buoy detection device using LTE will be possible through future research.
        4,300원
        8.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In September and October 2020, combined acoustic and trawl surveys were conducted in the northwestern sea of Jeju Island. In the survey area, a region, so called Jeju region, was designated to esimate the biomass of chub mackerel and jack mackerel using a trawl survey method and frequency difference method. In the September survey, the weight ratios of jack mackerel and chub mackerel to the total catch were 24.6% and 2.8%, respectively, and in the October survey, those ratios were 24.9% and 20.7%, which were used to calculate their biomass (trawl survey). Using the frequency difference range (–8 to –3dB) corresponding to two species in 120 and 200 kHz, their biomass was estimated (frequency difference method). As a result, the biomass of two species from the trawl method was 3252.3 tons in September and 5777.0 tons in October. The estimated biomass by the frequency difference method was 4926.6 tons in September and 7521.5 tons in October. It was the first trial to estimate the biomass of two species using the trawl and frequency differencing methods in South Korea although there were some differences between two methods. In addition, horizontal distributions of acoustic backscattering strength over the entire survey area were mapped.
        4,000원
        9.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Using environmental DNA (eDNA) in the fisheries and oceanography fields, research on the diversity of biological species, the presence or absence of specific species and quantitative evaluation of species has considerably been performed. Up to date, no study on eDNA has been tried in the area of fisheries acoustics in Korea. In this study, the biomass of a dominant species in the northwestern waters of Jeju Island was examined using 1) the catch ratio of the species from trawl survey results and 2) the ranking ratio of the species from the eDNA results. The dominant species was Zoarces gillii, and its trawl catch ratio was 68.2% and its eDNA ratio was 81.3%. The Zoarces gillii biomass from the two methods was 7199.4 tons (trawl) and 8584.6 tons (eDNA), respectively. The mean and standard deviation of the acoustic backscattering strength values (120 kHz) from the entire survey area were 135.5 and 157.7 m 2 /nm 2 , respectively. The strongest echo signal occurred at latitude 34° and longitude 126°15’ (northwest of Jeju Island). High echo signals were observed in a specific oceanographic feature (salinity range of 32-33 psu and the water temperature range of 19-20℃). This study was a pilot study on evaluating quantitatively aquatic resources by applying the eDNA technique into acoustic-trawl survey method. Points to be considered for high-quality quantitative estimation using the eDNA to fisheries acosutics were discussed.
        4,000원
        10.
        2021.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        One of the problems with abalone farms is that they need to be checked frequently after feeding them or visited once or twice a day and that the amount of food intake constantly fluctuates due to changes in water temperature around the farm and typhoons. In addition, the condition of abalone is not constant as it is divided into places that eat well and do not eat well according to its location. In order to solve this problem, there is a method of measuring the amount of food intake by using a load cell that can measure even the smallest weight in an abalone farm. Through this study, we implemented a system capable of measuring the amount of abalone feed required for systematic management of abalone farms and real-time monitoring using mobile and client PCs.
        4,200원
        11.
        2021.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        By applying super-high pressure (150-250 MPa) to a sealed pressure vessel, it is possible to make oyster shucking machine that automatically opens two-sheet shellfish or oysters. Possibility of developing a shucking machine was confirmed by identifying the working pressure for meat of oysters produced in the southern coast and conducting sensory evaluation of meat oysters. As a result of confirming the shucked oysters under super-high pressure of 150 MPa in the pressure vessel, the number of type A with separated shells and well-separated meat was 22 and type B with both shells and internal meat and shells not separated. For the oysters that were treated at 175 MPa, there were 58 type As with shell separated and meat well separated and 42 type Bs without oyster shells and insides. When looking at the oysters shucked at 200 MPa in the pressure vessel, the number of type A was 86 and type B was 14 accounting for 86% of oysters with good marketability. As a result of shucking oysters by applying 250 MPa, 96% type A oysters and 4% type B oysters were obtained from the total specimen. The total specimen oyster weight used in the conducted experiment was 6 kg, the average oyster shell weight was 3.99 kg and the average oyster meat weight was 1.25 kg. Therefore, the fatness of oyster meat, which measures the added value of oysters, is 20.8%. Sensory evaluation was conducted on thinned oysters by hand and type A oysters shelled by machine with an operating pressure of 200 MPa. The hand-worked oyster sample scored 4.7 points only in salty taste, and scored 5.0 or higher in color, shape, smell, fishy taste, texture and preference.
        4,000원
        18.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We analyzed the cutting mechanism of laver harvesting machine in the sea area near Gooam Port in Goheung, Jeollanam-do, and investigated the change and efficiency of laver collecting operation in the working ship. The laver working ship slides uniformly from the bow to the upper part of the laver collecting machine on the deck and cuts the wet laver attached to the bottom of the net at the blade of the havesting machine. The laver farming net, which was loaded with laver turrets on the deck by gravity and collected primitives, consisted of a ship structure that led to the stern side and into the sea. The working ship operation is in harvesting process while driving in a S-shape that is separated by one space to efficiently collect the laver net. During laver working ship operation, the speed was 0.51 m/s in the access stage, 0.56 m/s in the havesting stage, and 0.52 m/s in the exit stage. Considering the cutting edge life and production efficiency of the laver harvesting machine, it is appropriate to harvest 1.15 to 1.26 kg/rpm by operating at a rotational speed of about 700 to 800 rpm rather than forcibly harvesting the product at high speed. On the deck of the working ship, 959.7 kg of starboard and 1048.7 kg of center were 964.7 kg of port side. Based on the starboard, 9.3% of the central part and 0.5% of the port side appeared. The reason for this was due to the difference in harvest time according to the turning direction of the working ship.
        4,000원
        1 2