The biosorption and desorption of Cd were carried out using brown marine algae, known as the good biosorbent of heavy metals. The content of alginate bound to light metals could be changed by the physical and the chemical pretreatment of Sargassum fluitans biomass. The Cd uptake was independent of the alginate content. In case of protonated biomass, Cd uptake was the lowest because the alginic acid of biomass was dissolved to cadmium solution during the biosorption. The maximum Cd uptake of Sargassum biomass was ranged from 79㎎/g to 139㎎/g. In case of raw biomass, the higher the alginate content of biomass, the higher was the Cd uptake. 100% of Cd and light metals sorbed in the biomass were eluted at 0.1N HCl(pH 1.1). However, the elution efficiency in CaCl2 and Ca(NO3)2 solution was varied by the concentration, the solid to liquid ratio and the pH of calcium solution. The distribution coefficient between Cd and protons in the desorption solution at pH ranged from 1.6 to 2.9 was observed on the constant stoichometric coefficient(1.3).