검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 168

        163.
        1994.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Electrical contact property of the W-20wt%Cu contact materials manufactured by liquid phase sintering of nanocomposite W-Cu powders was investigated and discussed in terms of microstructural development during performance test. Nanocomposite powders were prepared by hydrogen reduction of ball milled W-Cu oxide mixture. They underwent complete densification and microstructural homogenization during liquid phase sintering. As a consequence, the W-Cu contacts produced from nanocomposite powders showed superior contact property of lower arc erosion and stable contact resistance. This might be mostly due to the fact that the arc erosion by evaporation of Cu liquid droplets and surface cracking remarkably became weakened. It is concluded that the improvement of anti-arc erosion of the composite specimen is basically attributed to microstructural homogeneity.
        4,000원
        167.
        2017.01 KCI 등재 서비스 종료(열람 제한)
        In this study, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/graphene oxide (GO) nanocomposite films containing various content of GO were prepared using solution casting method. The effect of GO content on Young’s modulus and dispersion of GO in PHBV matrix was investigated. Also, the thermomechanical properties, oxygen transmission rates and hydrolytic degradation of PHBV/GO nanocomposite films were studied. The addition of GO into PHBV improves the Young’s modulus and decreases thermal expansion coefficient. The improvement can be mainly attributed to good dispersion of GO and interfacial interactions between PHBV and GO. Furthermore, PHBV/GO nanocomposite films show good oxygen barrier properties. PHBV/GO nanocomposites show lower hydrolytic degradation rates with increasing content of GO.
        168.
        2004.04 KCI 등재 서비스 종료(열람 제한)
        The purpose of this study was to investigate the possibility of application of microwave energy for the fabrication of polymer/clay nanocomposite. APES/Clay nanocomposites were prepared at 130℃ for 30min with various content of clay by melt-intercalation method under classical and microwave heating source. APES/Clay samples were characterized by the means of X-ray diffractometry(XRD), thermal gravimetric analysis(TGA), and rheometric dynamic analysis(RDA). It was found that intercalated or exfoliated state was obtained in the samples according to the condition of organic modification, clay content, and heating source.
        6 7 8 9