Tungsten disulfide (WS2), a typical 2D layerd structure, has received much attention as a pseudocapacitive material because of its high theoretical specific capacity and excellent ion diffusion kinetics. However, WS2 has critical limits such as poor long-term cycling stability owing to its large volume expansion during cycling and low electrical conductivity. Therefore, to increase the high-rate performance and cycling stability for pseudocapacitors, well-dispersed WS2 nanoparticles embedded in carbon nanofibers (WS2-CNFs), including mesopores and S-doping, are prepared by hydrothermal synthesis and sulfurizaiton. These unique nanocomposite electrodes exhibit a high specific capacity (159.6 F g−1 at 10 mV s−1), excellent high-rate performance (81.3 F g−1 at 300 mV s−1), and long-term cycling stability (55.9% after 1,000 cycles at 100 mV s−1). The increased specific capacity is attributed to well-dispersed WS2 nanoparticles embedded in CNFs that the enlarge active area; the increased high-rate performance is contributed by reduced ion diffusion pathway due to mesoporous CNFs and improved electrical conductivity due to S-doped CNFs; the long-term cycling stability is attributed to the CNFs matrix including WS2 nanoparticles, which effectively prevent large volume expansion.
Numerous studies have addressed the commercial viability of lithium–air batteries (LABs). However, the high reactivity of Li with air moisture and CO2 has hindered the broad applicability of LABs. In this study, lithium-protective hybrid lithium–air batteries (HLABs) were fabricated with Super P (SP) and composites of fluorinated carbon ( CFx), MoS2, and WS2 as the cathodes. Subsequently, their potential use as a power source for the next generation of defense technologies was investigated. It was observed that a single cell HLAB with the SP-CFx composite cathode exhibited a specific capacity of 893 mAhg− 1 cathode. In comparison, a Tomcell with the SP cathode demonstrated a specific capacity of 465 mAhg− 1 cathode when discharged. The cells with SP-MoS2 and SP-WS2 cathode yielded specific capacities of 357 and 386 mAhg− 1 cathode, respectively. The improved performance of the SP-CFx cell can be attributed to synergistic effects of lithium–air cell and lithium battery reactions between CFx and SP. To assess all functionalities of the SP-CFx HLAB, lithium-protective HLABs were fabricated and discharged in air. To operate the lithium–air battery in air, pure lithium metal was sealed with solid electrodes (lithium-ion conducting glass–ceramics (LICGC)) and a buffer electrolyte (1 M LiFTSI in TEGDME) was applied. The SP-CFx cell was discharged for 25 days in air, greatly exceeding the 72 h requirement for the next-generation soldier power systems. These results demonstrate significant potential for HLABs to be used as a pioneering power source in nextgeneration energy-independent tactical defense units.
WS2-W-WC embedded carbon nanofiber composites were fabricated by using electrospinning method for use in high-performance supercapacitors. In order to obtain optimum electrochemical properties for supercapacitors, WS2 nanoparticles were used as precursors and the amounts of WS2 precursors were controlled to 4 wt% (sample A) and 8 wt% (sample B). The morphological, structural, and chemical properties of all samples were investigated by means of field emission photoelectron spectroscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. These results demonstrated that the embedded phases of samples A and B were changed from WS2 to WS2-W-WC through carbothermal reaction during carbonization process. In particular, sample B presented high specific capacitance (~119.7 F/g at 5 mV/s), good high-rate capacitance (~60.5%), and superb cycleability. The enhanced electrochemical properties of sample B were explained by the synergistic effect of the using 1-D structure supports, increase of specific surface area, and improved conductivity from formation of W and WC phases.
Nano-sized tungsten disulfide () powders were synthesized by chemical vapor condensation (CVC) process using tungsten carbonyl () as precursor and vaporized pure sulfur. Prior to the synthesis of tungsten disulfide nanoparticles, the pure tungsten nanoparticles were produced by same route to define the optimum synthesis parameters, which were then successfully applied to synthesize tungsten disulfide. The influence of experimental parameters on the phase and chemical composition as well as mean size of the particles for the produced pure tungsten and tungsten disulfide nanoparticles, were investigated