Field performance and morphological characterization was conducted on seven transgenic lines of Codonopsis lanceolata expressing γ-TMT gene. The shoots were obtained from leaf explants after co-cultivation with Agrobacterium tume-faciens strain LBA 4404 harboring a binary vector pYBI 121 that carried genes encoding γ-Tocopherol methyltransferase gene (γ-TMT) and a neomycin phosphotransferase II gene (npt II) for kanamycin resistance. The transgenic plants were transferred to a green house for acclimation. Integration of T-DNA into the T0 and T1 generation of transgenic Codonopsis lanceolata genome was confirmed by the polymerase chain reaction and southern blot analysis. The progenies of transgenic plants showed phenotypic differences within the different lines and with relative to control plants. When grown in field, the transgenic plants in general exhibited increased fertility, significant improvement in the shoot weight, root weight, shoot height and rachis length with relation to the control plants. However, all seven independently derived transgenic lines produced normal flower with respect to its shape, size, color and seeds number at its maturity. Indicating that the addition of a selectable marker gene in the plant genome does not effect on seed germination and agronomic performance of transgenic Codonopsis lanceolata. T1 progenies of these plants were obtained and evaluated together with control plant in a field experiment. Overall, the agronomic performance of T1 progenies of transgenic Codonopsis lanceolata showed superior to that of the seed derived non-transgenic plant. In this study, we report on the morphological variation and agronomic performance of transgenic Codonopsis lanceolata developed by Agrobacterium transformation.