검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Advancements in science and technology caused by industrialization have led to an increase in particulate matter emissions and, consequently, severity of air pollution. Nitrogen oxide (NOx), which accounts for 58% of road transport pollutants, adversely affects both human health and the environment. A test-bed was constructed to determine NOx removal efficiency at the roadside. TiO2, a material used to reduce particulate matter, was used to remove NOx. It was applied to a vertical concrete structure using the dynamic pressurized penetration TiO2 fixation method, which can be easily applied to vertical concrete structures. This study was conducted to evaluate the NOx removal efficiency of the dynamic pressurized-penetration TiO2 fixation method in a test-bed under real roadside conditions. METHODS : A test-bed was constructed in order to determine the NOx removal efficiency using the dynamic pressurized penetration TiO2 fixation method on the roadside. The dynamic pressurized-penetration TiO2 fixation method was applied by installing a vertical concrete structure. NOx was injected into the test-bed using an exhaust gas generator. By installing a shading screen, the photocatalytic reaction of TiO2 was suppressed to a maximum concentration of 1000 ppb along the roadside. The removal efficiency was evaluated by measuring NOx concentrations. In addition, illuminance was measured using an illuminance meter. RESULTS : From the results of the analysis of the NOx removal efficiency in the test-bed which the dynamic pressurized type TiO2 fixation method was applied to, an average removal efficiency ranging from 18% to 40% was achieved, depending on the illuminance. Similarly, according to the results of the evaluation of the NO removal efficiency, an average of removal efficiency ranging from 20% to 62% was achieved. Thus, the NOx removal efficiency increased when the illuminance was high. CONCLUSIONS : From the results of the experiment conducted, the efficiency of NOx removal per unit volume was obtained according to the illuminance of TiO2 concrete along an actual road. Field applicability of the dynamic pressurized-penetration-type TiO2 fixation method to vertical concrete structures along roads was confirmed.
        4,000원