검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2025.03 구독 인증기관·개인회원 무료
        결빙(Black Ice)은 도로 포장체 표면의 균열 등에 스며든 습기나 눈, 그리고 차량 주행 중 발생하는 타이어 분진 및 배 기가스 등의 영향으로 인해 도로 표면과 유사한 색상의 얇은 얼음막이 형성되는 현상을 의미한다(Cho et al., 2021). 도로 노면이 결빙 상태일 경우, 평균 미끄럼 저항 계수는 건조 노면의 약 30% 수준으로 크게 낮아진다(Lee et al., 2024). 또 한, 결빙은 도로 표면과 색상이 유사하여 운전자가 노면 상태를 즉각적으로 인지하기 어렵고, 이에 따라 제동이나 회피 를 위한 충분한 시간을 확보하기 어렵다. 최근 5년간 발생한 서리·결빙 노면 교통사고의 치사율(사고 100건당 사망자 수) 은 2.69명으로, 이는 건조 노면 교통사고 치사율의 약 2배, 습윤 노면의 1.3배 수준에 해당한다(KoROAD, 2024). 이러한 위험성을 고려하여 국토교통부는 2020년 전국 고속국도 및 일반, 위임국도를 대상으로 403개 구간을 결빙 취약 구간으로 지정하였으며, 이후 464개소로 확대하여 자동염수분사시설, 그루빙(Grovving), 결빙주의표지판 등 안전시설을 확충하여 결빙사고를 집중적으로 관리하고 있다(MOLIT, 2020; BAI 2021). 하지만, 결빙사고 발생건수는 2020년 524건, 2021년 1,204건, 2022년 1,042건으로 증가추세를 보이고 있어, 결빙 취약 구간의 평가 적절성과 실효성에 대한 검토 필요성이 대 두되고 있다(KoROAD, 2024). 본 연구에서는 최근 10년 고속국도에서 발생한 결빙사고와 결빙사고 영향인자를 Random Forest Algorithm으로 분석하 여 도로 구간별 결빙사고 위험도를 평가하였다. 국가교통정보센터의 노드·링크(Node·Link) 체계를 기반으로 전국 고속국 도의 동절기 기상, 기하구조, 교통량 등 결빙사고 영향인자를 구간별로 수집하였다. 각 구간은 최근 10년 결빙사고 데이 터를 통해 결빙사고 발생구간과 비발생 구간으로 분류하였다. 구간별 수집한 결빙사고 영향인자를 독립변수, 사고발생유 무를 종속변수로하여 알고리즘 학습을 위한 데이터셋(Data Set)을 구성하고, 데이터불균형 문제를 해결하기 위해 오버샘 플링(OverSampling) 기법 중 하나인 SMOTE(Synthetic Minority Oversampling Technique)을 적용하였다. 최종적으로 Random Forest Classification Model을 학습하고, 모델의 하이퍼파라미터 조정(HyperParameter Tunning)을 거처 결빙사 고 발생구간 예측성능이 가장 높은 모델을 결정하였다. 이를 통해, 전국 고속국도의 구간별 결빙사고 발생 위험도를 평 가하고 각 결빙사고 영향인자의 변수중요도를 분석함으로써 결빙 취약구간 평가 방안의 신뢰성 제고를 기대한다.
        2.
        2024.10 구독 인증기관·개인회원 무료
        2020년 국토교통부에서는 ‘결빙 취약구간 평가 세부 배점표’에 의하면, 전국의 고속국도 및 일반국도를 대상으로 결빙 취약 구간 464 개소를 선정하여 관리중에 있다. 그러나 감사원은 2020년 진행한 주요 사회기반시설(도로ㆍ고속철도) 안전관리실태 감사에서 결빙 취 약 구간 선정 시 터널 입출구부 등 결빙위험이 큰 구간이 도로포장 홈파기 대상구간에서 누락된 점을 지적하였다. 이러한 근거로 결 빙에 취약한 터널 입ㆍ출구에서 결빙사고가 우려되는 등 ‘겨울철 도로교통 안전 강화대책’의 실효성이 저하될 가능성이 제시되었다. 또한 본 연구에서 자체적으로 검토한 결과, 4개 특성 12개 항목으로 구성된 ‘결빙 취약구간 평가 세부 배점표’의 도로시설 항목에서 터널, 교량 등 도로시설물의 배점 부여 기준을 확인하기 어려웠으며, 각 도로시설에 대한 정의가 모호하여 평가표의 현장 적용성이 제 한되거나 신뢰도 검증이 부족한 점을 확인하였다. 본 연구에서는 국토교통부에서 제공하는 노드(Node) 및 링크(Link) 기반의 국내 도로망 GIS(Geographic Information System)데이터 에 결빙사고 데이터의 위치정보를 결합하여 고속국도 및 일반국도의 터널 및 교량 등을 포함하는 도로시설물 및 그 주변에서 발생한 결빙사고 이력을 자료화하였다. 최종적으로 도로시설물별 결빙사고 발생 비율 및 사고 심각도(사망자, 부상자 수)에 대한 분석을 통해 도로시설물의 결빙사고 상관 정도와 영향 범위를 파악하였다.
        3.
        2024.10 구독 인증기관·개인회원 무료
        2019년 12월, 상주-영천 고속도로 상행선에서 도로 노면 결빙에 의한 연쇄추돌사고로 48명의 사상자가 발생하였다. 이에, 국토교통부 는 2020년 1월 결빙 취약구간 선정기준을 마련하여 결빙 취약구간 403개소를 지정하고, 결빙 취약구간을 대상으로 2022년까지 1,699억 원의 예산을 투입하여 결빙사고 예방사업을 계획하였다(BAI, 2021). 하지만, 결빙 취약구간 선정기준에 대해 적정성 검토가 이루어지 지 않아 그 신뢰성과 실효성이 충분히 검증되지 않았다. 본 연구에서는 국가교통정보센터의 노드·링크(Node·Link) 체계를 기반으로 전국 고속국도 및 일반국도의 특성정보(시설, 선형구조, 기상, 교통 등)를 GIS(Geographic Information System) 데이터로 구축하였다. 최근 5년 결빙사고 발생이력이 있는 도로구간(Link)을 확인하고 Random Forest 알고리즘을 통해 도로 특성정보의 결빙사고에 대한 변수 중요도(Feature Importance)를 분석했다. 이를 통해 결빙사고와 각 인자의 상관성을 파악하여 ‘결빙 취약구간 평가 세부 배점표’의 항목별 배점을 수정, 보완함으로써 평가표의 신뢰성을 제고한다.
        4.
        2024.03 구독 인증기관·개인회원 무료
        국토교통부는 2020년 '결빙 취약구간 평가 세부 배점표’에 따라, 전국의 고속국도와 일반국도를 대상으로 410개 구간의 결빙 취약구 간을 선정하였다. 그러나, 2021년 감사원의 결빙 취약구간 지정 적정성 감사 결과에서 감사원은 현재 지정ㆍ관리 중인 결빙 취약구간 및 결빙 취약구간 평가 세부 배점표의 적정성에 문제를 제기하였다. 이에, 국토교통부는 결빙 취약구간을 재지정하여 발표하였으나 그 에 대한 평가 및 지정 적정성 검증이 아직 이루어지지 않았다. 본 연구에서는 결빙 취약구간과 결빙사고 데이터의 위치정보를 수집하여 GIS(Geographic Information System) 데이터로 구축하고 맵핑(Mapping)하여 결빙 취약구간 내 결빙사고이력을 확인함으로서 결빙 취약구간의 결빙사고 예측성능을 평가하였다. 또한, 각 결빙 사고 발생지점에서 도로시설, 교통, 선형구조, 환경인자 데이터를 수집하여 분석한다. 이를 통해 결빙사고와 각 인자 간의 상관성을 파 악하고, 그 결과에 따라 결빙 취약구간 평가 세부 배점표의 평가항목 및 각 항목별 배점을 수정하고 보완함으로써 결빙 취약구간의 신뢰성을 제고한다.