This study is a preliminary investigation into a method for updating analytical models using actual vibration measurement data to improve the reliability of the seismic performance evaluations. The research was conducted on 26 models with various parameters, aiming to develop an optimal analytical model that closely matches the natural frequencies of the actual building. By identifying the dynamic characteristics of the target building through vibration measurements taken just before the demolition of the structure, the natural frequency analysis results of the analytical models were compared to the measured data. Based on this comparison, an optimized method for adjusting the parameters of the analytical models was derived. Throughout the analysis, various parameters were adjusted, and the eigenvalue analysis results were corrected by comparing them with vibration measurements. Among the comparative analytical models, the model with the lowest error rate was selected. The results showed that, in all cases, the analytical model with a concrete compressive strength of 16 MPa (based on actual measurements), pin boundary conditions, and an idealized strip footing cross-section had the closest match to the actual building's natural frequencies, with an average error of less than 8%.
Recently, an indirect displacement estimation method using data fusion of acceleration and strain (i.e., acceleration-strain-based method) has been developed. This paper proposes an improved displacement estimation method that can be applied to more general types of bridges by building the mapping using the finite element model of the structure. An experimental validation of the proposed method was carried out on a prestressed concrete girder bridge, and the method provides the best estimate for dynamic displacements.
본 연구는 교량의 상시계측자료인 고유진동수 및 고유모드를 기준으로 계측기반모델을 구성하고, 구조해석을 수행하여 교량 공용상태에서 사장케이블 장력평가를 수행하였다. 케이블 설치 위치에 따라 하중유형별 케이블 장력이 다르다는 것을 알 수 있다. 고정하중과 활하중에 의한 케이블 계측장력은 케이블 설치위치에 따라 차이가 크지 않으나 설계하중을 적용한 해석결과보다 큰 값을 나타낸다. 계측기반모델에 대한 케이블장력분포는, 설계모델에 대한 장력보다 크지만, 계측장력과 유사한 분포를 나타낸다. 그러므로 장기거동을 고려하여 사장교 케이블설계는 계측기반모델의 해석결과를 반영할 필요가 있다. 이를 위하여 많은 계측자료를 이용한 장기거동 분석연구가 요구된다.