본 연구에서는 고속철도 강합성형 교통비 동적해석에 기반한 피로신뢰성평가 기법을 제시하고 동조질량감쇠기의 효과를 피로수명연장 측면에서 검토하였다. 피로 신뢰성 평가를 수행하기 위하여 S-N 곡선 및 선형누적손상이론을 이용하여 한계상태식을 설정하였다. 열차 속도와 교량 감쇠비의 불확실성을 고려하여 교량에 대한 반복적인 동적해석을 수행하고, 이 결과로부터 전체 교량수명동안에 교량이 받는 피로 손상도와 연관된 확률변수의 특성을 통계적으로 추정하였다. 최종적으로 결정된 확률변수와 한계상태식에 개선된 일계이차모멘트법(AFOSM)을 적용하여 피로 신뢰도 지수를 산정하였다. 40m 지간 강합성교량의 수치모사로부터 동조질량감쇠기 장착여부에 따라 피로 신뢰도 지수를 평가하고 그 결과를 제시하였다.
경부 고속철 40 m 단경간 PSC 교량을 대상으로 38 자유도 KTX 동력차를 주행속도 500 km/h까지 12 단계 불규칙 궤도형상과 상호 작용력을 고려하여 해석하였다. 차량의 윤축하중과 중심회전각을 평가하기 위하여 170 m 일반도상을 교량과 조합하여 횡압과 탈선계수 그리 고 윤중감소율을 허용기준과 비교하였다. 단순교와 연속교의 교량받침 최대 변위와 누적이동거리를 주행속도별로 해석하였다. PTFE 마찰판 과 DP-mate의 EN-1337-2 기준의 장기마찰시험을 수행하였다. 수행된 장기마찰시험은 차세대 고속철의 증가되는 주행속도를 고려하여 개선 방안을 제안하였다.
고속철 PSC 교량받침의 장기 마찰시험은 EN1337-2와 CUAP03.01/78기준을 기반으로 동일한 수직압력에 대한 온도변수별 누적 마찰거리 25,000 m 장기마찰시험을 수행하였다. 기존의 PTFE판은 우수한 마찰계수 결과에도 불구하고 10,000 m에서 손상되어 한계 내구성능을 나타 내었고, 반면에 DP-Mate판은 일부 온도구간에서 한계 마찰계수를 상회하였으나 성공적으로 장 기마찰시험을 만족시켰다. 개발된 마찰시험장치를 이용하여 온도변화(-35℃~70℃)내 저속(0.4 mm/s)시험 12 Cycle과 상온 고속(15 mm/s)시험 11 Cycle 을 32 일간 수행하였다.
고속철 PSC 교량 마찰받침의 내구성 평가를 위하여 해당국내 기준의 미비로 DIN EN 1337-2 과 CUAP 기준을 적용하여 마찰판의 5000 m 이동거리에 대한 마찰 시험을 수행하였다. 적용온도와 이동속도에 따라 마찰계수를 계측하고 기준에서 요구된 상한 한계와 비교하여 고속 주행으로 발생하는 증가된 이동거리에 대한 적합한 내구성 평가기준과 실험방법을 개발하고자한다.
Dynamic analysis of PSC box bridge bearings for high-speed KTX train vehicles has been carried out to evaluate a running safety of train. Improved numerical models of bridge/vehicle and interaction between bridge and train are adopted, where bending and torsional modes are considered. Dynamic/static sliding distances of the bearings according to the KTX running speed are proved as a major parameter rather than the AASHTO and EN1337-2 focused on the distance by temperature variations.
To evaluate the traffic safety of PSC box bridge for high running speed up to 500km/h of KTX, a dynamic analysis of displacement spectrum on the bearings of bridge is needed concurrently with existing design specifications. Longitude/transverse directions of displacement spectrum are considered to analyze the dynamic structural behaviors of PSC bridges as well as harmonic running movements of KTX due to three mass; a cargo body, front/rear bogies and four wheel axises connected with two suspensions. KTX power train is modeled by 38 degree-of -freedom ; 6 degree-of-freedom for body and bogies, and 5 degree-of-freedom for wheel axises. The rotation spectrum of KTX resulted in the analysis will be focused on the design specification of KTX running on the bridge, for increasing its speed as a new evaluation standards of traffic safety.
To evaluate the traffic safety of PSC box bridge for increasing speed 450km/h of KTX, a dynamic analysis of KTX wheel force spectrum is needed concurrently with existing design requirements. The wheel force spectrum are considered the dynamic PSC box bridge behaviors as well as KTX running movements with advanced numerical model. KTX power train is modeled one body, two bogies and four wheel axis as 38 degree of freedoms. The difference of each wheel forces are evaluated for running speed on the bridge upto the increasing target speed to propose new evaluation standards of traffic safety.
고속철 교량의 동적응답을 보다 정밀하게 해석하기 위한 동적해석방법을 개발하였다. 차후 증가될 초고속(450km/h)을 포함하여 고속 주행하는 KTX 동력차에 의한 교량의 동적거동을 면밀한 속도변수분석과 정밀한 해석을 위한 고속철, 교량 그리고 궤도구조물의 상호작용을 포함한 수치모델을 구성하였다. 네 가지 40~25미터 단순지간의 PSC 박스교를 3차원 유한 프레임요소 모델로 개발하였다. 스펙트럼밀도함수로 산출된 궤도불규칙값과 궤도간 상이한 거리차이를 수치모델화 하였다. 고속철차량은(KTX) 38자유도로 구성하였다. 38자유도 모델은 3방향 변위와 상응하는 회전각을 고려하였다. 동적증폭계수는 다양한 불규칙 궤도, 켐버, 주행속도, 자갈도상과 같은 주행조건에 의해 결정된다. 이와 같은 동적증폭계수를 해석하기위한 Newmark-β 기법과 Runge-Kutta기법을 적용하여 고속철 속도별과 경간별로 면밀하게 비교 분석하였다.