본 논문은 고유치문제로 정식화된 텐세그러티 구조물의 형상탐색에 대하여 제시하고자 한다. 텐세그러티 구조물의 안정을 위해서는 형상탐색을 수행하여야한다. 형상탐색을 위한 해석 방법은 내력밀도법과 일반역행렬을 이용한 방법, 이 두 가지가 널리 알려져 있다. 본 연구는 새롭게 형상을 탐색하는 방법을 제시하여 텐세그러티 구조물의 자기평형 응력을 얻었다. 제시한 방법은 기존의 방법을 기본으로 한 모든 절점의 평형 방정식을 고유치 문제로 정식화하였다. 이를 증명하기 위해 몇 가지 예제(텐세그러티 구조물)를 기존의 방법과 비교 하였다. 본 연구에서 제시된 방법은 기존의 방법과 같은 결과가 나왔으며, 나아가 해답을 얻는 과정이 훨씬 간단하였다.
지반-구조물 상호작용 시스템 구조물의 진동제어 시스템 복합재료 구조물과 같은 비비례 감쇠 구조물의 경우 정확한 동적응답을 얻기 위해서는 감쇠행렬을 고려한 고유치 문제를 계산하는 것이 필수적이다 그러나 대부분의 고유치 해법에서는 구하고자 하는 고유치 중 일부를 누락시킬 수 있기 때문에 어떤 고유치 해법이 실제문제에 응용 가능한 방법이 되기 위해서는 누락된 고유치의 존재 여부를 검사하는 기법을 포함하고 있어야만 한다. 비감쇠나 비례감쇠 시스템의 경우에는 널리 알려진 Sturm 수열성질을 이용하여 누락된 고유치를 쉽게 검사할 수 있는 반면에 비비례 감쇠 시스템의 경우에는 널리 알려진 Sturm 수열 성질을 이용하여 누락된 고유치를 쉽게 검사할 수 있는 반면에 비비례 감쇠 시스템의 경우에는 아직까지 검사 기법이 개발되어 있지않다 본 논문에서는 편각의 원리를 이용하여 감쇠행렬을 고려한 고유치 문제의 누락된 고유치의 존재여부를 검사하는 기법을 제안하였다 제안방법의 효용성을 검증하기 위하여 두가지 수치예제를 고려하였다,
구조 공학에서의 고유치 문제는 좌굴해석, 진동해석 등 여러분야에 응용되고 있다. 일반적으로 구조물의 좌굴강도 해석에 사용되는 대부분의 변수들은 불확실성을 내포하고 있으므로 확률론적 해석을 수행해야 하지만, 구조물의 좌굴 신뢰성 해석을 위한 극한상태 방정식은 확률변수의 함수로 명확히 표현되지 않으므로 확률 유한 요소법의 사용이 필요하다. 따라서 본 논문에서는 직접미분법에 의해 정식화된 확률 유한요소법을 사용하여 고유치 문제의 신뢰성 해석방법을 정식화 하고, 이를 바탕으로 좌굴 신뢰성 해석을 수행하였으며, 결과의 타당성을 검증하기 위하여 Crude Monte Carlo Method 및 이 방법의 단점을 대폭 보완한 Importance Sampling Method를 사용하였다. 본 논문에 의해 좌굴 신뢰성 해석 방법이 정립됨으로서 신뢰성에 기초한 최적 설계를 수행하는 경우, 시스템 파괴확률로서 소성 파괴확률과 더불어 좌굴 파괴확률의 고려가 가능해졌다.
판의 탄소성 좌굴문제는 판 구조의 해석과 설계시의 중요성으로 인하여 상당한 관심이 모아져 온 분야이다. 본 연구에서는 유한요소법에 의한 효율적인 탄소성 좌굴해석 프로그램을 개발하였다. 탄소성 강성행렬을 구성하기 위한 소성이론으로는 실험결과와 잘 일치하는 Stowell의 변형이론을 사용하였으며, 좌굴하중을 해석하기 위해서는 고유치해석에 의한 반복기법을 사용하였다. 고유치해석에서는 불필요한 고유치의 계산을 피할 수 있는 subspace반복기법을 사용하였다. 해석결과를 Stowell이 제시한 이론해와 Pride에 의한 실험결과와 비교하여 프로그램의 타당성을 보이고, 이를 이용하여 단순지지, 또는 고정된 경계조건에 대하여 일축 또는 이축응력이 작용되는 여러 경우에 대하여 좌굴하중을 구하였다. 또한, 탄소성 좌굴에 미치는 형상비의 영향을 검토하였다.