The aim of this study was to investigate the effects of different postural correction in the electromyographic (EMG) activity of the trunk and hip muscles during bridging exercises. Twenty-four healthy subjects volunteered for this study. The muscle activity was recorded with surface electrodes over the erector spinae, multifidus, gluteus maximus (GM), and hamstring (Ham) muscles; it was measured by using surface EMG equipment under the following 3 experimental conditions: manual postural correction, verbal correction, and no correction. The maximal voluntary isometric contraction (MVIC) was determined for each muscle group in order to represent each exercise as a percentage of MVIC and allow for standardized comparison between subjects. A one-way analysis of variance was used to determine significant differences in the EMG activities of each muscle between the 3 experimental groups. During bridging exercises, the manual postural correction on normalized EMG activity of the GM muscle during manual guiding was significantly higher than during verbal guiding and without guiding (p<.05). Furthermore, the GM/Ham ratio was significantly higher during manual guiding than during verbal guiding and without guiding (p<.05). These findings suggest that the activities of the hip and trunk muscles may be favorably modified with manual guiding during bridging exercises.
The purpose of this study is to examine the activity ratios of global trunk muscles and local trunk muscles in relation to adjustments in the level of task difficulty while performing stability exercises in easily applied bridging lumbar stabilization exercise. Twenty healthy subjects performed bridging lumbar stabilization exercise while the level of task difficulty was plate was used in the same posture for all the exercises. EMG was used to examine the activity ratios of the global muscles and multifidus in relation to the level of task difficulty. Moreover, the activity ratios of the multifidus muscle, the erector spinae and the gluteus maximus muscle were measured. A one-way ANOVA with repeated measures was used, and a Bonferroni correction was conducted (=.05). When the bridging lumbar stabilization exercise were performed at different difficulty levels, the activity of the multifidus muscle, which is a local muscle, was high in all three exercises. Also, compared to low intensity and intermediate intensity exercises, high intensity exercises showed more significant differences (=.05). Among all the muscles, the multifidus showed the highest activity at intermediate intensity. Based on these results, we suggest that in the case of bridging lumbar stabilization exercise, low intensity or intermediate intensity exercises are more suitable and efficient for local muscle stabilization.