검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In biomass gasification, efficiency of energy quantification is a difficult part without finishing the process. In this article, a radial basis function neural network (RBFN) is proposed to predict biomass efficiency before gasification. RBFN will be compared with a principal component regression (PCR) and a multilayer perceptron neural network (MLPN). Due to the high dimensionality of data, principal component transform is first used in PCR and afterwards, ordinary regression is applied to selected principal components for modeling. Multilayer perceptron neural network (MLPN) is also used without any preprocessing. For this research, 3 wood samples and 3 other feedstock are used and they are near infrared (NIR) spectrum data with high-dimensionality. Ash and char are used as response variables. The comparison results of two responses will be shown.
        4,000원
        3.
        2008.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        기존 콘크리트 포장의 단면 설계 시 발생하는 문제점을 해결하기 위해 유한 요소법(FEM)을 이용하여 것이 하나의 방법론으로 부각되었으며 현재 한국형 포장 설계법 개발 연구에서도 적용 중에 있다. 본 연구에서는 ABAQUS와 포트란 해석 프로그램을 이용하여 콘크리트 포장의 한계 응력을 계산하였고, 그 결과를 뉴럴 네트워크와 선형 회귀식을 이용하여 비교 분석하였다. 입력 변수가 많지만 다양한 해석을 하지 못하는 경우(입력변수 6개에 대해 81 경우 수 해석)에 대해 구조해석 결과를 뉴럴 네트워크(이하 NN: Neural Networks)와 선형 회귀식으로 비교한 결과, 구조해석 결과와 다소 차이가 있음을 확인하였다. 반면 입력 변수를 줄이되 다양한 경우에 해석한 경우(입력 변수 3개에 대해 343 경우의 수)의 분석 결과, NN과 선형 회귀식이 구조해석 결과와 매우 유사한 결과가 나타나는 것을 알 수 있었다. 하지만 그래프의 (0,0), (1,1) 부분에서 NN이 선형 회귀식에 비해 더 정확한 것을 확인하였다. 이와 같은 연구 결과를 통해서 한국형 포장 설계법의 핵심인 응력 계산 모듈을 선형 회귀식보다 좀 더 정확한 NN으로 해석하는 것을 제안하였다.
        4,000원
        4.
        1995.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        4,000원
        6.
        2018.02 KCI 등재 서비스 종료(열람 제한)
        This paper proposes a convolutional neural network model for distinguishing areas occupied by obstacles from a LiDAR image converted from a 3D point cloud. The channels of a LiDAR image used as input consist of the distances to 3D points, the reflectivities of 3D points, and the heights of 3D points from the ground. The proposed model uses a LiDAR image as an input and outputs a result of a segmented LiDAR image. The proposed model adopts refinement modules with skip connections to segment a LiDAR image. The refinement modules with skip connections in the proposed model make it possible to construct a complex structure with a small number of parameters than a convolutional neural network model with a linear structure. Using the proposed model, it is possible to distinguish areas in a LiDAR image occupied by obstacles such as vehicles, pedestrians, and bicyclists. The proposed model can be applied to recognize surrounding obstacles and to search for safe paths.