본 연구에서는 유비쿼터스 식물공장의 재배환경에 필요한 요소들의 센서 네트워크를 구성하고 자동으로 감지하여 적응형 뉴로-퍼지 추론시스템을 통하여 환경변화를 추론하여 식물공장의 재배환경을 적절하게 제어할 수 있는 새로운 자동제어시스템의 프레임워크를 제안하고, 이를 설계하였다. 유비쿼터스 식물공장 환경을 제어하기 위하여 식물공장의 재배환경에 영향을 미치는 환경요소인 실내온도, 근권온도, 습도, 광도, CO2 농도를 측정할 수 있는 센서 네트워크를 구성하고 측정된 환경요소의 변화에 따라 램프, 환기, 습도, CO2 농도, 온도를 제어할 수 있는 장치를 자동으로 제어할 수 있는 식물공장 자동제어시스템을 설계하였다. 이를 위하여 본 연구에서는 센서를 통하여 받아들이는 입력값을 퍼지소속함수로 변화하고 적응형 뉴로-퍼지시스템에 따라 추론하고 평가하여 보다 정밀하게 식물공장을 자동으로 제어할 수 알고리즘을 개발하였고 이를 구현하였다. 개발된 자동제어시스템을 상추 식물공장에 적용한 결과 만족스러운 시험결과를 얻을 수 있었다. 향후 연구로는 식물공장에서 재배하고 있는 작물별 생장모델의 적합도 검정 및 개선을 위하여, 작물별 재배규칙을 보다 상세히 도출하는 것이 필요하고, 작물의 재배에 필요한 지식을 보다 정량적으로 표현하고 지식상에 내포하고 있는 불확실성을 해결하는 것이 필요하다. 더 나아가 식물공장에서 환경인자간의 상호관련성을 보다 정밀하게 수식화하고 이를 추론할 수 있는 정밀하고 과학적인 자동제어시스템의 개발이 필요하다.
본 논문에서는 월 댐유입량을 예측하는데 있어서 기상예보정보를 활용한 뉴로-퍼지 시스템의 적용성을 검토하였다. 뉴로-퍼지 알고리즘으로 퍼지이론과 신경망이론의 결합형태인 ANFIS(Adaptive Neuro-Fuzzy Inference System)을 이용하여 모형을 구성하였다. ANFIS의 공간분할에 의한 제어규칙의 선정에 있어 퍼지변수가 증가함에 따라 제어규칙이 기하급수적으로 증가하는 단점을 해결하기 위해 퍼지 클러스터링(Fuzzy Clustering)
대기에서의 물순환은 기후시스템이라는 커다란 공간 안에서 다양한 인자들의 상호작용을 통하여 이루어진다. 즉, 어떠한 기후 현상도 그 자체적으로 발생할 수는 없다. 따라서, 많은 연구자들은 영향인자들의 분석을 통하여 기후 변화를 이해하고자 노력하여 왔다. 본 연구에서는 다양한 인자에 의하여 영향을 받아 발생하는 강수량의 예측을 위하여 실제 세계의 근사적이고 부정확한 성질을 표현하는데 효과적인 퍼지 개념을 이용하였다. 예측을 위하여 적용한 모형은 크게 뉴로-