PURPOSES: This research aims to estimate the occurrence of hydroplaning on roads based on the road alignment types and rainfall intensity in Seoul.METHODS: Three types of data were used for estimation of hydroplaning in this study. The Inner Circulation Road (12.5 km) to the Bukbu Expressway (7.4 km) in Seoul was selected as the test road and data was collected for road information using a probe-vehicle. Precipitation was observed from Automatic Weather System in Seoul. These data were interpolated by applying Inverse Distance Weighted Methodology for hydroplaning estimation. Finally, the water depth information of the roads was observed using an RCM411 device.RESULTS : This study demonstrated that the cross slope with small-angle-tilt or vertical section with large-angle-tilt are the primary factors causing hydroplaning on the roads. The flow velocity on steep slope is high; however, large drainage lengths result in hydroplaning on the roads.CONCLUSIONS : This result can contribute towards the reduction of car accidents on rainy days. Furthermore, information regarding hydroplaning can be delivered to drivers more rapidly and precisely in the future.
PURPOSES : This study aims to evaluate the road safety of the super-elevation transition section of a left turn curve and suggest the minimum longitudinal grade of a super-elevation transition section to be used before and after a left curved section.
METHODS: We evaluated the road condition by means of the safety-criterion-evaluation method involving side friction factors, and then solve the problem by introducing the minimum longitudinal grade criterion based on conditions described in the hydraulics literature.
RESULTS : It was calculated that when a road satisfies hydroplaning conditions, the difference between side friction assumed and side friction demanded is less than - 0.04. In this case, the safety criterion for the condition is unsatisfied. Conversely, when a road is in a normal state under either wet or dry conditions, it was calculated that the difference between side friction assumed and side friction demanded is more than 0.01. Thus, the safety criterion for this condition is found to be satisfied. After adjusting the minimum longitudinal grade applied to a super-elevation transition section, the hydroplaning condition can be eliminated and the safety criterion can be met for all sections.
CONCLUSIONS : It is suggested that a minimum longitudinal grade should be provided on super-elevation transition sections in order to prevent hydroplaning.