본 연구는 2차원 및 3차원 동적 탄소성 응력 해석을 위한 특수 적분해 경계요소법의 공식 개발을 제시한다 정적 탄성에 대한 기본식이 일반해를 구하는데 이용되었으며, 전체형상함수 개념을 이용하여, 변위율과 traction rate의 특수 적분해를 구함으로써 지배 방정식의 가속도 부분을 근사화시켰다. 시간 적분을 위하여 Houbolt 시적분 방법을 이용하였으며, Newton-Raphson 알고리즘을 이용하여 수치 연산을 행하였다. 제시된 공식에 따른 예제 해석을 통하여 그 방법의 유효성과 정확성을 설명하였다.
터널 등과 같은 지하구조계를 유한요소법 등의 수치적 방법으로 해석할 경우 인위적인 경제에서 파의 반사가 발생하게 되어 실제 결과의 큰 차이를 발생시킨다. 따라서 동역학적 하중을 받는 지하구조계는 실질적인 반무한 구조계로 고려되어야 한다. 특히 지하구조계는 실제 다층구조로 구성되어 있으므로 이러한 다층문제를 고려할 수 있어야 한다. 이를 위해 본 연구에서는 외부영역 경제적문제로 해석하기 위한 동적 수치기본해를 개발하였다. 주파수영역의 정적인 경우에 대한 엄밀 적분해와 Bessel 함수의 점근식을 이용한 적분을 통해 축대치문제를 2차원 문제로 보다 쉽게 적용할 수 있도록 하였다. 이와 같이 개발된 동적 수치기본해를 경제 적분 방정식에 적용하여 해석한 결과와 기존 해석결과와의 비교를 통해 그 효율성을 입증하였다. 또한 다층지반내 지하구조물에 대해 지반매체의 각 물성 및 공동의 깊이에 따른 민감도분석을 수해하여 지하구조계의 동적 거동특성 파악의 적용성을 다루었다.