Recently, the trend is emerging a variety of irregular tall buildings. It is important to design the building for lateral load according to this trend. Fluid Structure Interaction(FSI) simulation can be performed to understand the vibrations of the structure against dynamic wind loads. In order to make the physical characteristics of the actual structure and the analytical model the same, we studied core inserting equivalent stiffness modeling method. As a result of this analysis, the stiffness of the structure can be set similar to that of the two axes of the structure, and turbulence can be reproduced through the acceleration tendency.
현실세계의 구조물은 대부분 동하중의 영향을 받고 있지만, 구조해석이나 구조 최적화를 수행할 때는 정하중이 작용하는 것으로 가정한다. 실제 하중인 동하중을 고려하게 되면 다양한 하중들을 고려해야 하기 때문에 전산자원과 시간비용 측면에서 많은 제약이 따르기 때문이다. 그러나, 단순한 정하중 조건만을 고려하면 구조안전성 측면에서 바람직하지 못하기 때문에 가중치를 적용하거나 동하중을 대체하는 등가정하중을 적용하여 관련 문제를 보완하려는 연구가 진행되어 왔다. 본 연구에서는 등가정하중을 적용하여 동하중을 받고 있는 구조물에 대한 구조최적화 기법을 제안한다. 본 연구에서 적용하는 등가정하중은 기존 연구에서 제안한 바 있는 주자유도를 기반으로 하여 등가정하중 부과 위치를 결정하고 최적화 과정을 통해 산출한다. 이 과정에서 지나치게 큰 하중이 구해지지 않도록 가중치를 고려한 구속조건을 추가하여 기존 연구의 등가정하중의 최적화 과정을 보완하였다. 수치예제에서는 동하중이 작용하는 트러스 구조물과 평판 구조물에서 최적화된 등가정하중을 적용하여 사이즈 최적화를 수행함으로써 제안된 최적화 기법의 신뢰성을 검증한다.
동하중을 고려하는 구조해석은 전산자원과 시간측면에서 상당한 어려움이 따르기 때문에 외력을 이상적인 정하중으로 가정하는 것이 일반적이다. 그러나 정하중 조건으로 해석된 결과는 구조물의 안전설계 측면에서 충분한 신뢰를 주기 어렵다. 최근에는, 동하중의 영향을 받는 구조물의 효과적인 구조해석을 위해 동하중을 등가정하중으로 변환하는 기법이 제안되어 왔다. 이 기법은 최적화를 통해 구속조건을 만족하는 최소의 등가정하중을 구하는데, 구속조건은 임계시간의 변위를 사용하고, 등가정하중 분포 자유도는 경험적으로 선정하여 왔다. 그러나 안전설계 관점에서는 응력 구속조건을 적용하는 것이 타당하며, 경험적 자유도 선정은 몇 개의 자유도에 과도한 하중이 부과되거나 구조물의 거동에 영향력이 없는 자유도들이 선정될 가능성이 있다. 본 연구에서는 등가응력 구속조건을 고려하는 등가정하중 최적화 방법을 제안하고, 축소시스템 개념을 도입한 주자유도, 구속조건 요소 자유도, 외부하중 자유도로 구성되는 등가정하중 분포 자유도의 구성방법을 제안한다. 수치예제에서는 제안된 방법으로 구해진 등가정하중을 사용하여 등가응력을 구하고 동하중 해석 결과와 비교함으로써 제안된 방법을 통한 구조해석 방법이 구조안전성 측면에서 타당함을 보인다.
본 연구에서는 새로운 비선형해석 알고리즘인 적응형 Newton-Raphson 반복기법을 제안한다. 제안된 기법은 기존 Newton-Raphson 기법을 근간으로 적응형 부구조물화 기법을 이용하여 강성등가하중을 구하고, 이미 역행렬이 계산되어 있는 초기강성행렬에 강성등가하중을 적용하여 보정변위를 구하는 것으로 요약된다. 제안된 알고리즘의 가장 큰 특징은 하중 구간의 수에 관계없이 구조물 강성행렬에 대한 역행렬 계산을 단 한번만 수행한다는 것이다. 제안된 기법의 효율성은 강성행렬 및 역행렬 계산 후 부재강성행렬이 변경된 부재들이 연결된 자유도 수와 전체 자유도 수의 비율에 직접 관계된다. 이 비율에 따라 제안된 기법을 기존 비선형해석 기법과 보완적으로 사용함으로써 전체 비선형해석 효율을 향상시킬 수 있다.
본 연구는 동하중의 영향을 받는 구조물의 효율적인 구조 해석 및 최적화 수행을 위해 임계 시간의 동하중을 등가 정하중으로 변환하는 방법을 제안한다. 동하중을 등가 정하중으로 변환하기 위해서는 적절한 자유도 선정이 중요하다. 그러나, 기존 방법에서는 자유도의 선정이 임의로 이루어져서 몇 개의 자유도에 과도한 정하중이 부과되거나, 구조물의 거동에 영향력이 없는 자유도들이 선정됨으로써 신뢰성이 떨어지는 결과를 제공하기도 한다. 본 연구에서는 2단계 축소기법과의 연동을 통해 중요 자유도를 선정하고, 선정된 자유도에 등가 정하중을 부과하는 방법을 제안하다. 주자유도는 구조물의 거동에 지배적인 영향력을 갖고 있으며, 손상 탐지나 시스템 검증에서도 중요한 의미를 갖는 자유도이다. 수치예제를 통해 선정된 자유도에 등가 정하중을 분포시킨 후 동하중하의 시간 응답과 비교하여 그 신뢰성을 확인한다.
본 연구에서는 요소의 추가 및 제거 또는 부분적인 강성 변경이 있을 때, 이러한 강성 변경이 전체 구조물의 거동에 미치는 영향을 하중으로 표현한 강성등가하중을 제안한다. 강성등가하중에 의한 재해석은 초기 구조물을 대상으로 하므로 이미 계산된 강성행렬 및 역행렬을 다시 사용할 수 있어 재해석 효율을 크게 향상시킬 수 있다. 본 논문에서는 강성등가하중의 개념을 정의하고 간단한 병렬 스프링 구조물을 이용하여 강성등가하중 산정 가능성에 대하여 우선 기술한다. 다음으로 일반적인 골조 구조물에서 강성 변경에 대한 강성등가하중 산정 절차를 제안하고, 마지막으로 몇몇 강성 변경 사례에 대한 강성등가하중 산정 및 해석결과를 제시함으로써 제안된 기법을 검증한다. 강성등가하중은 향후 비선형해석, 구조물 거동및 응력 제어 등 다양한 문제에 활용될 수 있을 것으로 기대된다.
Gust Factor법은 구조물의 등가정적 풍하중을 평가하는 일반적인 방법으로 구조물의 최대 응답시의 풍하중의 분포가 평균풍하중의 분포와 동일한 형상을 가진다는 가정하에 적용한다. 그러나 대스팬 구조물의 경우 평균 풍하중의 형상과 변동 풍하중의 형상이 다를 수 있어 1차모드뿐 아니라 고차모드의 영향을 고려하여 구조물의 풍응답과 풍하중을 산정하여야 한다. 본 논문에서는 등가정적 풍하중을 산정하기 위하여 현재 사용되고 있는 Gust Factor 법 (GF법), Load-response-correlation법 (LRC법)에 대해 고찰하고, Advanced Conditional Sampling 법 (ACS법)을 제안하였다. ACS법은 최대하중효과를 나타내는 순간에 선택된 풍압분포와 구조물의 동적거동에 의해 발생한 관성력을 합성하여 등가정적풍하중을 산정하는 방법이다. 최대하중 효과는 풍동실험에서 얻어진 풍압데이터를 이용하여 시간이력해석으로 평가한다. 제안된 ACS법과 기존의 GF법 및 LRC법을 지붕 구조물에 적용하여 등가정적 풍하중을 산출하고 이를 상호 비교 분석함으로써 ACS법의 유효성을 검증하고자 한다.
이 논문에서는 기존의 보-거더 구조계 주차장 구조물에 대한 차량하중영향 연구를 토대로, 플랫 슬래브 구조계에서 차량하중영향에 대한 연구를 수행하였다. 먼저, 최대부재력을 일으키는 차량하중의 적용을 위해 플랫 슬래브의 주요 설계지점에 대한 영향면을 구성하였으며, 플랫 슬래브의 등가차량하중계수를 인공 신경망기법을 이용하여, 슬래브 두께, 지판 두께, 지판 크기, 슬래브의 단변, 장변 길이 등 주요구조변수로 제시하였다. 사용된 신경망의 훈련은 많은 패턴수를 갖는 비선형 회귀분석에 적합한 Levenberg-Marquardt 알고리즘을 이용하였으며 해석결과와 인공 신경망의 출력의 비교를 통해 알고리즘의 유효성을 검증하였다. 플랫 슬래브 구조계의 등가차량하중계수를 살펴보면, 보-거더 구조계의 경우와 유사하게 주열대와 중간대의 정모멘트 부재력에서 차량하중에 매우 취약함을 알 수 있었다.
최근에 넓은 공간이 요구되는 건축물에서는 칸막이 벽과 같은 비구조재의 사용이 감소됨으로써 감쇠효과가 크게 줄어들고 있으며 고강도재료의 사용으로 바닥판 구조물이 유연화, 장경간화 되어가고 있다. 대형집회공간, 쇼핑몰, 사무실 등과 같이 장경간 건축물에서는 사람의 움직임에 의하여 과도한 진동이 발생할 수 있으며 이러한 진동은 건축물의 사용성을 크게 저하시키는 원인이 되고 있다. 바닥판 진동의 주요 진동원 중의 하나가 보행하중이다. 보행하중을 받는 구조물의 진동해석에 있어서 보행하중을 적용하는 일반적인 방법은 한 절점에 보행하중을 연속적으로 가하거나 주기하중으로 이상화된 동적하중을 가하는 것이다. 그러나 이러한 방법은 보행의 이동효과를 고려할 수 없다. 본 논문에서는 실제 바닥판 구조물의 고유진동수와 감쇠비를 평가하였으며 예제 구조물의 효율적인 진동해석을 위하여 보행하중을 적용하였다.
본 논문에서는 실무에서 이동 집중하중에 대한 별도의 복잡한 구조해석을 수행하지 않고도 등분포하중에 대한 부재력으로부터 손쉽게 차량하중의 영향을 고려한 거더와 보 부재의 설계 부재력을 구할 수 있도록 등가차량하중계수를 제안하였다. 먼저 국내에서 생산되는 중,소형 차량의 조사와 외국의 주차장 관련 설계규준의 비교, 검토를 통해 주차장 구조물의 한계 활하중인 총중량 2.4ton의 설계기준차량을 설정하였으며, 이를 토대로 설계 활하중인 등분포하중(500kg/m2)과 집중하중(P=2.4ton)에 대한 구조부재의 거동 특성을 분석하고 회귀분석을 통해 상호 관계식을 부재 길이의 함수로 구성하였다. 나아가 제안된 등가차량하중계수를 대표적인 보와 거더 부재에 적용시켜 그 효율성과 신뢰성을 검증하였다.
1960년대 이후 구조공학자들이 구조해석 및 설계시의 고려대상(하중, 부재저항력 등)에 내재하는 불확실성을 구조물 안전도의 중요 영향인자로 인식하게 됨에 따라 확률이론을 도입한 구조해석 및 설계법이 급속히 발달하였고, 이 분야의 연구결과에 히입어 최근에는 기존 시방서에 이러한 설계법의 도입이 활발히 이루어지고 있다. 이러한 세계적인 경향에 맞추어, 국내에서도 확률론적 설계법을 도입하기 위해서는 설계시 고려되어야 하는 작용하중의 확률적 특성을 규명하는 연구가 선행되어야 한다. 이에 본 연구에서는 아파트에 작용하는 적재하중의 자료를 체계적으로 수집, 통계처리하여 확률적 특성을 분석하였다. 또한 이 자료를 이용하여 사용기간 동안의 극한값을 분석하여 현행 설계하중과 비교하였고, 부재별로 합리적인 설계하중안을 제시하였다.