PURPOSES: The rumble strip installed at the highway near the tollgate has the purpose to reduce the vehicle velocity or prevent sleepiness by awakening people to the danger. These rumble strip has different vibration decibel from the rumble strip shapes, resulting in some fatigue damage to human because a driver suffers from a lot of stress and displeasure. In this connection, the objective of this paper is to analyze the vibration decibel perceived by a driver in the vehicle under some conditions.
METHODS: The vibration decibel conveyed from the tire can be analyzed. The frequency analysis methods were used according to DFT (Discrete Fourier Transform) analysis, FFT (Fast Fourier Transform) analysis, CPB (Constant Percentage Bandwidth) analysis. But the frequency analysis method in this paper is the 1/24 OCT(Octave) band analysis because of the convenience of the analysis and the overall vibration amplitude along the frequency.
RESULTS : By using the results of the vibration decibel after analyzing the 1/24 OCT band analysis, these results can be compared from some conditions (e.g., rumble strip shape, uniform velocity of a vehicle, road condition, mass of a vehicle). As a result, the numerical values of decibel are not directly proportional to the vehicle velocity.
CONCLUSIONS : At the condition that a vehicle is passing by the rumble strip, the value of a vibration decibel at the rumble strip of the cylinder shape is smaller than the rumble strip of rectangular shape regardless of the rumble strip depth and width. At the mass condition, the more a vehicle is massive, the more the vibration decibel increases. At the road condition, the vibration decibel at the wet road is smaller than the value at dry road condition.
PURPOSES: This research investigates traffic noise characteristics as change the transverse rumble strips shape from rectangular to cylinder at toll plaza of highway.
METHODS : The traffic noise was investigated at two different places at toll plaza of highway. One is modified grooving, another is employed cylinder shape of TRS instead of rectangular shape of TRS. A measurement of traffic noise was conducted at same location and time period. The traffic volume information was gotten from office of highway office and vehicle speed was measured by speed measuring device. The traffic noise measurement was conducted from 13:00 to 23:00 and by pass-by method. Also, the traffic noise was measured behind noise barrier. Various distance from noise barrier(7.5m, 30m, 50m) and different heights(1.2m, 3m, and 5m) were parameter for measurement of traffic noise in this study.
RESULTS : The class 1 vehicle was contributed from traffic volume which was increased 1,500. However, the distribution of traffic speed didn’t change compare to previous investigated period. From this study, It was found that the external traffic noise was changed as function of geometric shape of TRS. The external noise from modified grooving was less than 1.2dB(A) of the current TRS. A difference of traffic noise was 20dB(A) before and after barrier. It came from a noise barrier effect as reduction of traffic noise. According to investigate a traffic noise distribution near barrier, there is similar noise characteristic as function of height at 7.5m distance from noise barrier. Also, There is no different traffic noise between 30m and 50m from source of the noise of sound barrier.
CONCLUSIONS: Based on this traffic noise investigation result, there is a clear characteristic difference as changed TRS shape. The traffic noise was reduced by changed TRS shape. Specially, traffic noise was decreased although the traffic volume was increase for same investigation time and period. It is implied that cylinder type of TRS significantly reduces the traffic noise. The specification of various TRS will be studied in the future.
럼블스트립에 의해 발생하는 진동의 크기는 럼블의 형태에 따라 변화하게 되는데, 럼블스트립의 깊이나 폭의 설계가 적절하지 못할 경우 차량의 타이어에 마모를 일으킬 뿐만 아니라 운전자에 과도한 진동이 전해져 불필요한 긴장감을 주어 사고로 이어질 가능성이 있다. 또한 실제 럼블스트립에 관련된 주변 주거지역과 운전자의 소음 및 진동에 관한 민원이 접수되고 있다. 이와 관련하여 본 연구에서는 고속도로 톨게이트 진입로에 설치되어져 있는 럼블스트립의 형태 및 설계재원이 변화하는 경우에 따라 차량 내부의 운전자가 핸들을 통해 감지할 수 있는 진동 데시벨의 크기를 측정하고 진동데시벨-럼블 형태의 관계를 찾고자 한다.
럼블스트립의 형태에 따라 운전자가 감지할 수 있는 진동 데시벨을 측정하기 위하여 다음 그림. 1~4와 같은 4가지 럼블을 측정대상으로 선택하였다. 진동을 측정하기 위한 차종은 기아 자동차의 K-5, 현대 자동차의 Starex로 선택하 였다. 또한 도로노면상태는 젖은 상태의 노면과 마른 상태의 노면 두 가지 상황으로 분류하였다. 서로 다른 럼블스트 립은 3.4m의 일정한 간격을 유지하며 분리되어 있다. 차량의 진동 측정 주행속도는 40km/hr, 60km/hr, 80km/hr, 100km/hr의 4가지 속도로 분류하였으며, 제동거리의 문제 때문에 100km/hr를 측정하지 못한 경우도 존재한다. 한 럼블당 측정횟수는 측정의 정확성을 위하여 3~4회 실시하였다.
위와 같은 조건하에 측정되어진 진동은 펄스장비에 의해 디지털 신호화되며, 최종적으로 주파수분석을 통해 주파수 별 진동의 크기를 구할 수 있다. 주파수 분석에는 주파수 별 진동 크기를 이산적으로 도출 가능한 DFT(Discrete Fourier Transform) Analysis와 DFT분석의 주파수 별 반복되는 계산과정을 개선하고 주파수 별 진동 크기를 연속적으로 도출 가능한 FFT(Fast Fourier Transform) Analysis, 이러한 FFT분석 과정 중 일정한 밴드폭에 가중치를 부과하여 옥타브 중심 주파수에 대해 이산적으로 진동의 크기를 도출할 수 있는 CPB(Constant Percentage Bandwidth) Analysis 등의 여러 방법이 존재한다. 하지만 본 연구에서 최종적으로 도출하고자 하는 것은 주파수 별 진동의 크기가 아닌 운전자가 직감 가능한 진동 데시벨을 구하고자 하는 것이기 때문에 주파수 분석 중 1/24 OCT Band Analysis를 사용하고자 한다. 진동 데시벨은 다음 표 1과 같이 ANSI(American National Standards Institute) S1.8-1989에 의해 도출되어진다.
고속도로 영업소 진입로에는 운전자에게 주의환기를 주기 위해 횡방향 럼블스트립이 설치되어 있다. 이러한 럼블스트립은 대부분 직사각형 형상을 갖고 있다. 럼블스트립의 형상에 따라 소음의 특성이 다르게 나타나는 것으로 알려져 있다. 본 연구에서는 직사각형 형태의 럼블스트립을 원형의 럼블스트립으로 개선함에 따른 소음특성 변화에 대한 연구를 수행하였다. 서울외곽순환고속도로 영업소 광장에 개선된 원형 형상의 럼블스트립을 적용하고, 사후 모니터링을 실시하여 개선 전·후의 소음특성에 대해 분석하였다.
본 연구 결과, 럼블스트립의 개선 전·후 소음특성은 개선후의 교통량이 증가했음에도 소음은 감소하는 것을 알 수 있었다. 차량주행속도는 개선 전·후 모두 약 58km/h로 거의 유사하게 나타났다. 원형의 럼블 스트립이 직사각형 형상의 럼블스트립보다 시간대별로 약 1~3dB(A)의 소음저감 효과가 나타났다. 이런 현장적용의 결과를 볼 때, 횡방향 럼블스트립의 다양한 규격(럼블스트립의 간격, 깊이, 형상 등)에 대한 추가적인 연구를 진행하면 더 우수한 성능의 럼블스트립 규격을 개발할 수 있을 것으로 사료된다.
PURPOSES: This study is to investigate a generated traffic noise when vehicle pass over a transverse rumble strip at toll plaza of highway. METHODS: To investigate traffic noise at toll plaza of highway, Pass-by method which is the most common used for measuring traffic noise was adopted and the traffic noise at toll plaza was measured for 10 min per hour for 11hours(13:00~24:00). RESULTS: The measured traffic noise by pass-by method was changed as function of the transverse rumble strip configuration. Generally, the maximum difference among three noise measurement sections was 7 dB(A). It might be related with traffic speed. Also, the measured traffic noise was strongly generated from a passenger car which was 2 axle. It means that the most of traffic noise on the road is generated at tire/pavement interface of the passenger car. CONCLUSIONS: The traffic noise was strongly related with vehicle speed and transverse rumble strip configuration on the road. For driver safety, the transverse rumble strip is definitely necessary. However, the complaints from residents near highway was increased by traffic noise from transverse rumble strip. Therefore, To satisfy both safety and reduction of traffic noise, the development of configuration of transverse rumble strip is necessary in the further study.
PURPOSES: This study evaluated a measuring technique for tire-pavement interaction noise that uses a noble close proximity (NCPX) method as well as for noise level measured inside of a car (e.g., Inside Noise Level) in term of rumble strips constructed at a tall gate. METHODS: According to the measurements of NCPX and inside noise level (INL), 1/3 octave band frequency analysis and overall noise level calculation were conducted in order to evaluate noise levels of NCPX and INL, depending on types of rumble strips. RESULTS: The tested sections of general concrete pavement surface and two different types of rumble strips were evaluated, using 1/3 octave band frequency analysis and overall noise level. From the analyzed results, it can be concluded that rumble strips generate a relatively huge noise levels when compared to the concrete pavement surface. CONCLUSIONS: Noting that above 3 dBA different noise levels can let drivers know that they are getting close to toll gate; therefore, they should apply their brakes. Thus, the noise levels of rumble strips are required to be reduced, based on considering the neighbors living near toll gates.