The purpose of this study is to estimate the thickness of concrete slabs using the impact echo method based on the stress waves, which is one of the nondestructive test method, to evaluate the safety and construction conditions of concrete slabs. If the correlation and reliability of the impact echo method and the slab thickness are secured, it can be considered that the quality control of the concrete slab is possible in existing structures and structures under construction.
In this study, it was evaluated the early-strength of mock-up concrete by replacement of the flyash after it was ground by vibration mill and was modified chemically. Also, the early-strength of the specimens for maintaining structure was evaluated on the first, second, third day separately.
In this study, I tried to derive the expression intensity estimation through analyzing the correlation between wave velocity and compressive strength of high-strength concrete and normal-strength one, using ultrasonic pulse velocity which is one of the non-destructive tests which do not damage the structure. By producing a material age strength and body separate experiment which is applied to the ultrasonic pulse velocity, we have derived the estimating compressive strength such as a formula strength of normal-strength concrete : Fc=0.0841vp3.6018, R2=0.82 high strength concrete : Fc=0.0008vp6.9287, R2=0.88. As a result of this verification experiment, the estimated error rate of the compressive strength of normal strength concrete is 16.32%, in the case of high-strength concrete is now 7.58 percent.
To evaluaiton of heat history and spalling of concrete conlmn exposed to high temperature, □300×300×H450mm Specimen was used. fiber condition is Nylon 0.15vol.%, Polypropylene 0.1vol.% and steel fiber 0.3vol.%. The type of find aggregates are silica sand, wash sand and slag sand.