정밀농업의 핵심인 변량살포(VRA) 기술은 방제 분야에 적용이 가능하여, 경제적 효과뿐만 아니라 적정살포를 통한 환경 보전 효과도 기대할 수 있는 등 여러 이점이 입증되었다. 그러나 변량살포 기술에서 목표속도를 중심으로 제한된 속도범위 내에서 비행하고 살포율 오차를 안정시키는 것이 핵심요소이다. 본 연구의 이론에서 현실적으로 목표속도에 대하여 ±13% 정도의 속도변이를 허용할 수 있을 것으로 판단되었고, Koo & Park(2015)가 개발한 변량살포 제어시스템에 수동(manual), 자동(auto pilot), 경로안내(way-point guidance) 등 세 가지 비행모드의 적용성에 대하여 고찰하였다. 비행제어 모드에 따른 등속 비행에 대한 속도의 질을 비교하면, 수동과 자동은 실시간 속도를 모니터링 하지 않으므로, 두 경우 모두 평균 비행속도가 목표속도와 큰 편차를 보일 가능성이 있었다. 즉 범위율(PR)이 각각 18.1 및 16.1%로 나타났으나, 경로안내 모드에서는 6.5%로 나타나서 변량살포 제어시스템에의 적용성이 증명되었다. 자동 및 경로안내 모드에 대한 변이계수(CV)가 비슷하므로, 자동모드 또한 비행속도의 모니터링의 방법을 조종자에게 추가로 제공한다면 변량제어 시스템과의 적용성을 보일 것으로 생각된다.
본 논문에서는 저가의 MEMS 관성 센서와 지자기 센서를 이용하여 자세 정보를 제공받는 자세측정장치(ARHS)를 구현하였다. 저가형 IMU센서와 MCU를 이용하여 운동 자세각을 계산하는 DCM 알고리즘을 설계하고, 3축짐벌에 장착하여 연산결과의 정확도를 측정하였다. DCM 알고리즘을 이용 연산된 자세각의 정확도는 roll 및 pitch에 대하여 약 1.1%로 나타났으며, yaw각의 경우는 3.7%로 나타났다. Yaw 각의 경우에는 스텝핑 모터를 구동하는 실험환경에 따른 교란의 영향으로 그 오차가 상대적으로 크게 나타난 것으로 평가되었다. 짐벌 실험장치를 이용한 센서의 검증에서 더욱 정밀한 실험을 위해서는 주변 환경 요인에 대한 제어가 요구될 것으로 보이며, 실험장치의 스테핑 모터 구동 시 발생하는 진동 및 자기장의 영향과 실험 장치의 금속성 구조물의 영향으로 생각되는 센서 데이터의 오차 및 불안정 상태를 차단할 수 있는 장치의 보완이 필요할 것으로 보인다. 그리고 지자기 센서의 경우 좁은 범위의 측정에 추가하여 넓은 범위의 측정도 보완되어야 할 것으로 생각된다.
본 논문에서는 저가, 저전력 및 소형의 IMU를 구성하기 위한 MEMS 관성 센서를 이용하여 자세 정보를 제공받는 ARHES에 위의 센서를 사용하기 위해 자이로 센서 및 가속도센서의 데이터 출력 특성을 검증하여 오차 및 정확도를 분석하였다. 센서 실험을 위하여 진자 실험 장치를 제작하였고, 진자 운동에 대한 센서 데이터를 수집하였다. 이론적인 수식을 유추하여 센서 데이터의 정확성 분석을 위한 기준 값으로 설정하였다. 센서값과 이론값을 비교하면 각속도에서 4.32~5.72%, 가속도에서 x-, z-축 방향에 대하여 각각 3.53~6.74% 및 3.91~4.16%의 오차율을 나타냈다. 진자실험 장치를 이용한 센서 검증에서 무인헬리콥터에 사용될 센서로서 적합한 것으로 평가되었으며 이는 짐벌장치 등을 이용한 자세추정 알고리즘을 구성하는데 기초가 되었다. 또한, 더욱 정밀한 실험을 위해서는 온도 등 주변 환경 요인에 대한 보정이 요구된다.
농용무인 헬리콥터는 벼농사는 물론 전작, 과수 등 소규모 필지의 정밀방제에 이용되고 있으며 농작업의 새로운 패러다임으로 자리 잡고 있다. 본 연구의목적은 농용헬리콥터의 비상시퀀스에서 정지비행 중 측풍에 의해서 비상착륙자리를 이탈하지 않고 위치를 유지하는 편류제어 모듈과 알고리즘의 성능을 평가하는데 있다편류제어의 목적은 비상착륙과 연동되어있는데, 비상조건에 도달하게 되면 호버링을 하면서 비상대처 알고리즘이 작동하게 된다. 그러나 관성 제어 는등속운동에서기체의 움직임을 감지하지 못하게 되고 측풍에 의하여 비상지점으로부터 편류를 하게 되어 착륙 목표지점으로부터 멀어질 수 있다.GPS 모듈을 기초로 개발한 편류제어모듈을 시험하였다.알고리즘 및 실효성을 고려하여 5 m 직경 내에 위치를벗어나지 않는지에 대한 기준을 적용하였다. 초기에는 2~4m/s의 측풍 교란에 대하여 과민하게 반응하였지만 이후5 m직경 내에서 위치를 벗어나지 않고 자세 및 요의 방향을 유지 하였다. 목도의 관찰에서는 전후좌우 흔들림을인지하기 어려운 정도이지만, 데이터에서 보인 편위는GPS 수신기의 특성에 기인하는 것으로 판단한다. 이와같은 편류제어는 비상착륙이나 호버링을 유지하려 할 때의도하지 않는 편류를 제어하는데 사용될 수 있다.