In this study, seismic performance of bushings and their connection parts was analyzed by performing shaking table tests for various types of bushings widely used as auxiliary equipment of main transformers in domestic substations. As a result of the seismic tests of five types of 154 kV bushings according to the manufacturers, all the bushings secured the structural integrity even at the acceleration of 1.4 g and it was found that leakage of insulating oil didn't occur. Also, the average acceleration amplification rate at the upper part of the bushings was about 2.5 to 3.0 times higher than the lower one. On the other hand, when a representative 345 kV bushing was subjected to the seismic test, the structural integrity was secured even at 1.0 g acceleration similar to the design earthquake load level, but in this test, leakage of insulating oil occurred. However, when a stiffener restricting the connection of the bushing is installed in the same 345 kV bushing, the displacement of the bushing connection is controlled and the stiffener prevent the oil from leaking even at the acceleration of the designed seismic level.
Ultra-high voltage transformer industry has characteristic of small quantity batch production system by other order processing unlike general mass production systems. In this industry, observance of time deadline is very important in market competitive
본 연구에서는 전력설비 중 그 중요도가 가장 큰 변압기를 대상으로, 지진 발생 시 변압기의 파손을 방지하기 위하여 마찰진자 면진장치를 개발하고, 진동대시험을 통하여 그에 대한 내진성능을 입증하였다. 본 연구에서 개발한 마찰진자 면진장치에 대해 압축재하시험 및 마찰시험을 수행한 결과, 변압기의 면진장치로서 적용 가능한 것으로 나타났으며, 특히 변압기 축소모형을 대상으로 진동시험대에 의한 내진성능시험을 수행한 결과, 기존의 일반 고정기초형식보다 변압기 기초부의 최대 응답가속도는 약30%, 부싱 상단의 최대 응답가속도는 약 59% 감소하였다. 또한, 마찰진자 면진장치 설치 후, 변압기의 고유진동수가 약 82% 감소하며 장주기로 이동함을 확인할 수 있었다. 이와 같이 변압기에 마찰진자 면진장치를 적용하는 경우, 지진으로 인한 변압기의 파손을 효과적으로 방지할 수 있을 것으로 판단된다.
지진과 같은 재난이 발생하였을 때에도 전력설비는 그 본래의 기능을 상실하지 않고 구조적인 안정성을 유지해야 하는 핵심 산업시설물이다. 이 연구는 가장 대표적인 전력설비인 154kV 변압기에 부착된 애자형 부싱의 진동특성과 내진성능을 분석하였다. 연구의 목적에 따라 국내에서 운용하던 실제 154kV 변압기 부싱을 대상으로 30tonf 용량의 진동대를 이용하여 진동시험이 실시되었다. 진동시험은 동특성분석시험과 내진성능시험 그리고 파괴한도시험으로 구분하고, 각각의 시험에는 정현소인파, 인공지진파 그리고 연속공진정현파를 진동대운동으로 입력하였다. 이 논문에는 시험에 사용된 시편과 진동설비의 특성 그리고, 시험 방법 및 종류를 설명하고, 시험 결과 얻어진 계측자료의 특성에 대하여 논의한다. 이 연구를 통하여 국내에서 운용중인 154kV 변압기 부싱은 그 고유진동수가 20Hz 이상인 고진동수 설비이며, 감쇠비는 4%미만인 것으로 분석되었다. 또한, 특별한 경우를 제외하고, 변압기 부싱은 국내의 설계기준지진에 대하여 충분한 내진안전성을 보유하고 있으며, 강한 공진운동에 의해 예상되는 부싱의 최초 파괴모드는 하단 개스킷의 파손인 것으로 밝혀졌다.
전력송전시스템에서 변전소는 에너지공급의 효율성을 높이기 위하여 다수의 변압기를 동시에 운영하는 병렬 운전을 한다. 이 논문에서는 변압기의 병렬 운전 방식을 고려하여 변전소를 다중피해상태로 모사할 수 있는 신뢰성 해석 방법을 개발하였다. 그리하여 변전소의 다중피해상태를 고려한 전력망의 지진 신뢰도 평가 결과를 파괴와 생존의 이중피해상태만을 고려한 기존의 신뢰도 평가 결과와 비교하였다. 몬테 카를로 방법을 사용한 국내 345kV 전력망에 대한 지진 신뢰성 평가 결과, 망 전체의 신뢰성 지수들은 이중 및 다중피해 상태에 의한 망 전체의 피해정도 차이가 그다지 크지 않음을 나타내었다. 수요절점신뢰성 지수에서는 이중피해상태만을 고려한 피해정도 가 다소 높게 나타나는 경향이 있었다. 특히 이중피해상태에 의한 공급 지장 전력량 기대치는 다중피해상태에 의한 것보다 상당히 높게 나타났다.
This paper proposes a heuristic scheduling algorithm to satisfy the customer''s due date in the production process under make to order cnvironment. The goal is to achicve the machine scheduling in the transformer winding process, in which consists of para
이 논문은 절연유를 정제하여 SF6 가스를 용해시켰을 때 절연유의 수십 MHz대의 고주파 절연파괴 전압과 유전특성에 관해서 연구한 것이다. 1)절연유에서의 고주파 전류는 전압의 1/2승에 거의 비례하여 증가한다. 2)전원주파수가 증가함에 따라 고주파 절연파괴는 주파수의 제곱에 역비례하여 감소하는 현상을 나타내고 AC절연파괴의 전압때보다 약 35%정도가 감소한다. 3) 용해된 기체의 압력을 증가시킴에 따라 고주파 절연파괴 전압은 원만하게 증하한다. 4)전원주파수의 증가에 따른 유전정접(tan δ)은 거의 지수 함수적으로 증가하고 유전률(ε)은 [0.6% MHZ]의 기울기로 삼소하는 경향을 나타낸다. 5) SF6 가스를 용해시켰을때 절연파괴 특성은 Air 또는 Ar을 용해시켰을 때 보다 약 25% 정도 향상되는 특성을 나타낸다.
The formation potential and pathway of less-chlorinated PCBs, including mono- and di-chlorinated biphenyls, was investigated when PCBs contained in transformer oil were dechlorinated by commercial treatment. Potassium hydroxide with polyethylene glycol (PEG-600) was used for dechlorination of PCBs, and its destruction efficiency to whole 209 congeners of PCBs was 97.1% on average, ranging from 95.6% to 98.2%. Homologue of mono-CBs showed the negative destruction efficiencies, while those of highly-chlorinated ones through tri- to deca-CBs showed better efficiencies than about 99%. In particular, mono-chlorinated biphenyl in meta-position (#2) was about 34-47 times enriched after dechlorination, thus the reactivity seemed to be in the order of ortho-, para-, and meta-chorinated biphenyl. Co-planar PCBs' dechlorination efficiency was averaged as high as 99.4%, but 3,4,4',5-TeCB (#81) showed a relatively lower efficiency than others' in one case. Not only sodium metal but also alkaline metal such as potassium was thought of affecting the formation or enrichment of mono-chlorinated biphenyls produced by Wrutz-Fittig reaction as intermediates and products.
The dechlorination processes and efficiencies of PCBs contained in transformer dielectric oils were investigated on three commercial-treatment companies. Alkaline dispersion method was used for dechlorination of PCBs mainly using molten metallic sodium or potasium hydroxide with PEG, and its dechlorination efficiency to whole congeners of PCBs was 98.94% on average. Homologues of highly-chlorinated biphenyls showed better efficiencies than those of less chlorinated ones, especially mono-chlorinated biphenyl in para-position (#2) was about 37 times enriched after chemical treatment. Co-planar PCBs' dechlorination efficiency was averaged as high as 99.78%, but 3,3',4,4'-TeCB was relatively low as 96.5%. It was suggested for better dechlorination efficiency to remove the water in transformer oil prior to chemical reaction and to stir the reagents more rapidly when using alkaline dispersion method.
Practical disposal of transformer insulation oil laden with PCBs (polychlorinated biphenyls) by a chemical treatment has been studied in field work. The transformer insulation oil containing PCBs was treated by the required amounts of PEG (polyethylene glycol) and KOH, along with different reaction conditions such as temperatures and times. The reaction of PEG with PCBs under basic condition produces arylpolyglycols, the products of nucleophilic aromatic substitution. Removal efficiencies of PCBs in insulation oil before and after chemical treatment were examined.
The removal efficiency of PCBs was very low at lower temperatures of 25 and 50℃. Under the reaction condition of PEG 600/KOH/100℃/2hr, removal efficiency of PCBs was approximately 70%, showing completely removal of PCBs containing 7~9 chlorines on biphenyl frame which appear later than PCB IUPAC Number 183 (2,2',3,4,4',5',6-heptaCB) in retention time of GC/ECD. However, when increasing the reaction temperature and time to 150℃ and 4 hours, removal efficiency of PCBs reached 99.99% without any formation of PCDDS/PCDFs during the process. Such reaction conditions were verified by several official analytical institutions. In studying the reaction of PEG with PCBs, it confirmed that the process of chemical treatment led to less chlorinated PCBs through a stepwise process with the successive elimination of chlorines.
A practical and efficient disposal method for chemical dechlorination of PCBs (polychlorinated biphenyls) in transformer oil was evaluated. The transformer oil containing PCBs was treated by the PEG 600 (polyethylene glycol 600) and potassium hydroxide (KOH) along with different reaction temperatures(25, 50, 100 and 150oC) and times(30, 60, 240 and 480 min). The best disposal efficiency of PCBs in transformer oil was attained under the experimental conditions of PEG 600 (2.5 w/w%)/KOH (2.5 w/w%)/150oC/4 hrs, showing completely removal of all PCBs containing 3-9 chlorines on two rings of biphenyl. In studying the reaction of PEG/KOH with PCBs, it confirmed that the process led to less chlorinated PCBs through a stepwise process with the successive elimination of chlorines.