검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        1.
        2017.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Four types of high Mn TWIP(Twinning Induced Plasticity) steels were fabricated by varying the Mn and Al content, and the tensile properties were measured at various strain rates and temperatures. An examination of the tensile properties at room temperature revealed an increase in strength with increasing strain rate because mobile dislocations interacted rapidly with the dislocations in localized regions, whereas elongation and the number of serrations decreased. The strength decreased with increasing temperature, whereas the elongation increased. A martensitic transformation occurred in the 18Mn, 22Mn and 18Mn1.6Al steels tested at −196 oC due to a decrease in the stacking fault energies with decreasing temperature. An examination of the tensile properties at −196 oC showed that the strength of the non-Al added high Mn TWIP steels was high, whereas the elongation was low because of the martensitic transformation and brittle fracture mode. Although a martensitic transformation did not occur in the 18Mn1.9Al steel, the strength increased with decreasing temperature because many twins formed in the early stages of the tensile test and interacted rapidly with the dislocations.
        4,000원
        2.
        2017.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This paper is concerned with a test method that can be used to investigate the parameters of the Johnson-Cook constitutive model. These parameters are essential for accurately analyzing material behavior under impact loading conditions in numerical simulation. Ti-6Al-4V alloy (HCP crytal structure) was used as a specimen for the experiments. In the 10−3-103/ s strain rate range, three types of experimental methods (convention, compression and tension) were employed to compare the differences using MTS-810, SHPB and SHTB. Finite element analysis results when applying these parameters were displayed along with the experiment results.
        4,000원
        3.
        2016.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The present study deals with the effects of micro-alloying elements such as Ni, V, and Ti on the recrystallization behavior of carbon steels at different strain rates. Eight steel specimens were fabricated by varying the chemical composition and reheating temperature; then, a high-temperature compressive deformation test was conducted in order to investigate the relationship of the microstructure and the recrystallization behavior. The specimens containing micro-alloying elements had smaller prior austenite grain sizes than those of the other specimens, presumably due to the pinning effect of the formation of carbonitrides and AlN precipitates at the austenite grain boundaries. The high-temperature compressive deformation test results indicate that dynamic recrystallization behavior was suppressed in the specimens with micro-alloying elements, particularly at increased strain rate, because of the pinning effect of precipitates, grain boundary dragging and lattice misfit effects of solute atoms, although the strength increased with increasing strain rate.
        4,000원
        4.
        2016.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In the present study, the tensile properties and dynamic strain aging of an Fe-24.5Mn-4Cr-0.45C alloy were investigated in terms of strain rate. During tensile testing at room temperature, all the stress-strain curves exhibited serrated plastic flows related to dynamic strain aging, regardless of the strain rate. Serration appeared right after yield stress at lower strain rates, while it was hardly observed at high strain rates. On the other hand, strain-rate sensitivity, indicating a general relationship between flow stress and strain rate at constant strain and temperature, changed from positive to negative as the strain increased. The negative strain-rate sensitivity can be explained by the Portevin Le Chatelier effect, which is associated with dynamic strain aging and is dependent on the strain rate because it is very likely that the dynamic strain aging phenomenon in high-manganese steels is involved in the interaction between moving dislocations and point-defect complexes.
        4,000원
        6.
        2016.04 서비스 종료(열람 제한)
        Recently, an indirect displacement estimation method using data fusion of acceleration and strain (i.e., acceleration-strain-based method) has been developed. This paper proposes an improved displacement estimation method that can be applied to more general types of bridges by building the mapping using the finite element model of the structure. An experimental validation of the proposed method was carried out on a prestressed concrete girder bridge, and the method provides the best estimate for dynamic displacements.
        7.
        2015.10 서비스 종료(열람 제한)
        This research investigated the effects of matrix strength on the direct tensile behavior of high performance hybrid fiber reinforced cementitious composites (HPHFRCCs) at high strain rates. 3 different type matrixes were used (56 MPa, 81 MPa and 180 MPa). And macro fiber was long hooked fiber (H, =0.3 mm,=30 mm) and micro fiber was short smooth fiber (S, =0.2 mm,  =13 mm). The volume content of macro fibers was 1.0% and the volume content of micro fibers was 1.0%. The high matrix strength clearly increased the tensile strength and peak toughness of HPHFRCCs even at high strain rates (74 ~ 161 /sec).
        8.
        2014.10 서비스 종료(열람 제한)
        This research investigated the effects of adding micro fibers on the direct tensile behavior of ultra-high-performance hybrid-fiber-reinforced concrete (UHPHFRC) at high strain rates. Macro fiber was long smooth fiber (LS, Df=0.3mm, Lf=30mm) and micro fiber was short smooth fiber (SS, Df=0.2mm, Lf=13mm). The volume content of macro fibers was 1.0% and the volume content of micro fibers varied between 0.0 and 1.0%. The addition of micro fibers clearly increased the tensile strength of UHPHFRCs even at high strain rates.