해당 연구는 산업 폐수에서 염료를 효율적으로 제거하기 위한 고급 박막 나노복합체(TFN) 기반 나노여과막을 개 발하여 효과적인 폐수 처리 방법을 제시합니다. 최근 연구의 동향을 보면, 나노카본, 실리카 나노스피어, 금속-유기 프레임워 크(MOF) 및 MoS2와 같은 혁신적인 재료를 포함하는 TFN 막의 제조에 중점을 둡니다. 주요 목표는 염료 제거 효율을 향상 시키고 오염 방지 특성을 개선하며 염료/염 분리에 대한 높은 선택성을 유지하는 것입니다. 이 논문은 넓은 표면적, 기계적 견고성 및 특정 오염 물질 상호 작용 능력을 포함하여 이러한 나노 재료의 뚜렷한 이점을 활용하여 현재 나노여과 기술의 제 한을 극복하고 물 처리 문제에 대한 지속 가능한 솔루션을 제공하는 것을 목표로 합니다.
나노여과를위한 박막 나노복합체(TFN) 멤브레인 기술의 발전은 천연 자원에서 오염 물질을 제거하는 데 중요하 다. 최근에는 기존의 박막 복합체(TFC) 및 나노복합체 멤브레인에서 불가피한 단점을 극복하기 위해 다양한 금속유기구조체 (MOF) 수정이 테스트되었다. 일반적으로 MIL-101(Cr), UiO-66, ZIF-8 및 HKUST-1 [Cu3(BCT2)]은 용매 투과성 및 용질 제 거 측면에서 막 성능을 현저하게 향상시키는 것으로 입증되었다. 이 리뷰에서는 이러한 MOF가 나노 여과에 미치는 영향에 대 한 최근 연구가 논의될 것이다. 서로 다른 금속유기구조체의 동시 사용 및 고유한 금속유기구조체 레이어링 기술(예: 딥 코팅, 스프레이 사전 배치, Langmuir-Schaefer 필름 등)과 같은 다른 새로운 기능도 멤브레인 성능을 향상시켰다. 이러한 MOF 변 형 TFN 멤브레인은 각각의 TFC 및 TFN 멤브레인에서 분리 성능을 향상시키는 것으로 자주 나타났을 뿐만 아니라 많은 보 고서에서 비용 효율적이고 환경 친화적인 공정에 대한 잠재력을 설명한다.
물 부족을 포함한 기후 변화의 해로운 결과는 효과적인 정수에 대한 관심을 가져왔다. 또한, 수질 오염 수준이 높 아지고 환경 파괴 수준이 심해지면서 오염 물질을 제거하려는 방안들이 요구되고 있다. 물을 정화하기 위해 반투막을 통한 삼투압 절차들을 사용할 수 있으며, 최근 연구에 따르면 탄소 양자점(CQD), 그래핀 양자점(GQD) 및 산화 그래핀 양자점 (GOQD)을 포함한 나노입자를 복합 박막(TFC)에 합체하면 유사한 수준의 염 거부율을 유지하면서 물흐름을 증가시킬 수 있 다. 이러한 효과 외의 여러 가지 효과가 있지만 그 중에서도 친수성을 높이고, 살균 성질을 보이고, 방오 특성으로 인해 박테 리아 및 기타 미생물의 축적을 방지하면서 막의 효과가 감소하는 것을 막는 것을 보여준다. 이 보고서는 양자점이 합체된 정 수용 복합 막에서 양자점의 제조 과정, 응용, 기능성, 성질 및 역할을 논의한다.
A variety of composite powders having different aluminum and carbon contents are prepared using various organic solvents having different amounts of carbon atoms in unit volume as ball milling agents for titanium and aluminum ball milling. The effects of substrate temperature and post-heat treatment on the texture and hardness of the coating are investigated by spraying with this reduced pressure plasma spray. The aluminum part of the composite powder evaporates during spraying, so that the film aluminum content is 30.9 mass%~37.4 mass% and the carbon content is 0.64 mass%~1.69 mass%. The main constituent phase of the coating formed on the water-cooled substrate is a non-planar α2 phase, obtained by supersaturated carbon regardless of the alloy composition. When these films are heat-treated at 1123 K, the main constituent phase becomes phase, and fine Ti2AlC precipitates to increase the film hardness. However, when heat treatment is performed at a higher temperature, the hardness is lowered. The main constitutional phase of the coating formed on the preheated substrate is an equilibrium gamma phase, and fine Ti2AlC precipitates. The hardness of this coating is much higher than the hardness of the coating in the sprayed state formed on the water-cooled substrate. When hot pressing is applied to the coating, the porosity decreases but hardness also decreases because Ti2AlC grows. The amount of Ti2AlC in the hot-pressed film is 4.9 vol% to 15.3 vol%, depending on the carbon content of the film.
리튬금속전지(LMB)는 매우 큰 이론 용량을 갖지만 단락(short circuit), 수명 감소 등을 야기하는 덴드라이트(dendrite) 가 형성되는 큰 문제점을 갖고 있다. 본 연구에서는 poly(dimethylsiloxane) (PDMS)에 graphene oxide (GO) nanosheet를 고르게 분산시킨 PDMS/GO 복합체를 합성하였고 이를 박막 형태로 코팅하여 덴드라이트의 형성을 물리적으로 억제할 수 있는 막의 효과를 이끌어내었다. PDMS의 경우, 그 자체로는 이온 전도체가 아니기 때문에 리튬 이온의 통로를 형성시켜 리튬 이온의 이동을 원활하게 하기 위하여 5wt% 불산(HF)으로 에칭하여 PDMS/GO 박막이 이온전도성을 가질 수 있도록 하였다. 주사전자현미경(scanning electron microscopy, SEM)을 통해 전면 및 단면을 관찰하여 PDMS/GO 박막의 형상을 확인하였다. 그리고 PDMS/GO 박막을 리튬금속전지에 적용하여 실시한 배터리 테스트 결과, 100번째 사이클까지 쿨롱 효율(columbic efficiency) 이 평균 87.4%로 유지되었고, 박막이 코팅되지 않은 구리 전극보다 과전압이 감소되었음을 전압 구배(voltage profile) 를 통해 확인하였다.
최근 유기용매나노분리막(OSN) 기술의 응용분야가 확대되고 있으며 그에 따른 분리막 성능향상이 요구되고 있다. 본 연구에서는 박막복합막 형태의 OSN 분리막을 제조하여 용매의 투과성능을 측정하였다. 먼저 비용매상전이법(NIPS)을 활용하여 한외여과막 지지체를 제조하였고, 지지체의 성능을 최적화하기 위해 고분자(PSf or PES)와 기공형성제(PVP or Pluronic F-127)의 종류 및 조성의 영향을 확인하였다. 지지체 표면에 MPD와 TMC 단량체를 계면중합하여 폴리아미드 박막을 형성하였다. 제막된 박막복합막 OSN 분리막의 용매투과성능과 배제율을 측정하여 평가하였다. OSN 지지체로는 PSf 대비 PES 지지체의 성능이 안정적이었으며 Pluronic F-127보다 PVP를 도프용액에 첨가하였을 때 성능이 더 향상되었다. 기존 TMC-MPD 반응을 활용하여 박막복합막을 제조하였을 때 Acetonitrile 용매의 투과성능이 EtOH보다 월등히 높은 것을 확인 할 수 있었다.