검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Tetracycline is one of the most commonly used as antibiotics for the livestock industry and it is still widely used nowadays. Tetracycline and its metabolites are excreted with excrement, which is difficult to completely removed with conventional sewage treatment, therefore it is apprehended that the tetracycline-resistant bacteria occurs. In this study, the oxidant named ferrate(VI) was used to degrade the tetracycline and investigate the reaction between ferrate(VI) and tetracycline under various aqueous conditions. The highest degradation efficiency of tetracycline occurred in basic condition (pH 10.1 ± 0.1) because of the pKa values of tetracycline and ferrate(VI). The results also showed the effect of water temperature on the degradation of tetracycline was not significant. In addition, the dosage of ferrate(VI) was higher, the degradation of tetracycline and the self-degradation of ferrate(VI) also higher, finally the efficiency of ferrate(VI) was lower. The results said that the various mechanisms effects the reaction of ferrate(VI) oxidation, it required the consideration of the characteristics of the target compound for optimal degradation efficiency. Additionally, intermediate products were detected with LC/MS/MS and three degradation pathways were proposed.
        4,200원
        2.
        2013.09 KCI 등재 서비스 종료(열람 제한)
        The degradation of 3-chlorophenol(3-CP) by various AOPs(Advanced Oxidation Processes) including the ultraviolet / hydrogen peroxide, the Fenton and the ultraviolet(UV)-Fenton process has been conducted. The highest removal efficiency for 3-CP in the aqueous phase was obtained by the UV-Fenton process among the AOPs. In the UV-Fenton process, The removal efficiency of 3-CP decreased with increasing pH in the range of 3 to 6, and it decreased with increasing initial concentration. As the intermediates of 3-CP by UV-Fenton reaction, 3-chlorocatechol, 4-chlorocatechol, and chlorohydroquinone were detected thus the degradation pathways were proposed.