검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        2.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에는 가뭄의 유발 요인으로 강수량, 기온, 상대습도 등의 기상현상을 활용하고 가뭄 피해로 인한 대응 요소로서 대체수원, 제한급수, 운반급수 등의 비상급수를 적용하여 AI기반 가뭄 대응 정보 구축 방안을 구성하였다. AI 머신 러닝 기법 중 널리 사용되는 의사결정나무 모형을 통하여 예측 기법을 수립하였다. 연구 대상 지역은 비상급수 활용 빈도가 높고 종관기상관측소가 존재하는 충주시, 안동시, 의성군을 선정하였다. 자료 기간은 2014년부터 2019년까지의 자료를 이용하였으며, 가뭄 유발 기상요인으로 ASOS의 강수량 및 기온, 습도를 이용하고 가뭄 피해 요소로 국가 가뭄정보 포털의 비상급수 현황 자료를 활용하였다. 모형 학습 결과 정확도가 약 0.97, F1-Score가 약 0.5로 나왔으며, 이는 비상급수가 필요한 상황과 그렇지 않은 상황을 97%의 확률로 예측할 수 있음을 의미하며, 비상급수가 필요했던 표본만을 대상으로 했을 경우 약 50%의 확률로 예측이 가능한 것을 의미한다. 따라서 의사결정나무 모형을 적용하여 예측 정확도를 분석한 결과 가뭄 대응 비상급수 준비지역 예측을 위한 적용성이 높은 것으로 평가되었다. 그러나 본 연구에서는 기상 조건만을 가뭄 유발 요인으로 반영하였기 때문에, 공급수량 부족 등의 요인을 추가적으로 검토할 필요가 있으므로 가뭄과 연관된 요소인 저수지 용량 등을 추가하고 비상급수 이외의 피해 요소 역시 확장하여 연구를 개선하고자 한다.
        4,000원