기후변화 모델을 통해 미래 전망에 대한 연구를 수행하는 것은 다양한 분야에서의 적응과 대응 전략을 수립하고 이상기후에 대한 영향을 최소화하고자 하는데 그 목적이 있다. 본 연구에서는 총 20개의 기후변화 모델 자료(1981∼2100년)를 수집하였으며 미래 시나리오는 RCP 4.5와 8.5시나리오를 사용하였다. 한강유역을 대상으로 지역오차보정을 통해 지역적인 스케일의 불일치를 개선하고 특히, 미래 시나리오에 대해서는 비정상성 분위사상법을 통해 미래 시나리오의 추세가 왜곡되지 않도록 하는 NSQM기법을 제안하였다. 베이지안 모델 평균기법(BMA)을 적용하여 각 관측소별로 가중치가 높은 모델만을 선별한 최적의 모델 조합을 통해 강우자료의 정확성과 신뢰도를 확보하였다. 베이지안 앙상블 강우의 R2=0.54, NSE=0.53, RMSE=90.49 mm로 단일모델에 비해 상대적으로 개선된 결과를 나타내었다. 미래 시나리오에 대한 전망결과 온실가스 배출농도가 높은 RCP 8.5 시나리오의 증가율이 RCP 4.5 시나리오에 비해 더 크게 나타났다. 또한 극치수문사상분석을 위해 GEV Scaling과 SPI가뭄지수를 이용한 홍수 및 가뭄의 IDF와 SDF곡선을 전망하였다. 확률강우량 산정 결과 관측기간의 500년 빈도, 지속시간 10분에 해당되는 강우강도가 224.1 mm/hr인 것에 비하여 RCP 4.5, RCP 8.5 시나리오 각각 279.8 mm/hr, 299.7 mm/hr로 기준 시나리오에 비해 증가하는 전망 결과를 나타냈다. 가뭄의 경우, 한강유역은 가뭄에 대한 민감도가 낮은 것으로 전망되었다. 본 연구를 통해 불확실성을 줄이고 다양한 통계적인 분석결과를 제시함으로써 극치수문사상의 전망이 가능하였다. 이를 통해 수자원 변동성과 취약성을 파악하고 수자원 계획 및 운영을 위한 정보 제공에 도움을 줄 것으로 판단된다.
분위사상법(QM, Quantile Mapping)은 GCM(Global Climate Model) 자료의 계통적 오차를 보정하여 보다 신뢰성 높은 자료로 재생성하기 위해 활용되고 있다. 이 기법은 사상(mapping)시키려는 대상(object) 자료의 통계분포모수가 정상적(stationarity)이라는 가정 하에 대상 자료의 누적확률분포(CDF, Cumulative Distribution Function)를 목표(target) CDF에 통계적으로 투영시키는 것이 일반적이다. 따라서 GCM에서 제공되는 미래 기후시나리오의 강우시계열과 같이 비정상성(non-stationarity)을 갖는 장기 시계열자료에 대한 적용에는 문제점을 보이고 있다. 본 연구에서는 비정상성을 갖는 장기시계열자료의 오차보정을 위해 통계분포모수에 경향성을 부여하는 비정상성 분위사상법(NSQM, Nonstationary Quantile Mapping)을 적용하였다. NSQM 적용을 위한 확률분포로 수문분야에서 광범위하게 쓰이고 있는 Gamma 분포를 선정하였으며, 대상 시나리오는 CCCma(Canadian Centre for Climate modeling and analysis)에서 제공하고 있는 CGCM3.1/T63모형의 20C3M(reference scenario)과 SRES A2 시나리오(projection scenario)를 활용하였다. 한강유역 내 관측기간이 충분한 10개의 지상관측소로부터 강우량을 수집하였다. 또한 6월과 10월 사이에 연강수량의 65% 이상이 집중되는 한반도의 계절성을 반영하기 위해 홍수기(6∼10월)와 비홍수기(11∼5월)를 구분하였고, 기준기간(Baseline)은 1973∼2000년, 전망기간(Projection)은 2011∼2100년으로 구분하였다. 다양한 목표분포의 설정을 통하여 NSQM의 적용성을 평가하고자 하였으며, 전망기간은 FF시나리오(Foreseeable Future Scenario, 2011∼2040년), MF시나리오(Mid-term Future Scenario, 2041∼2070년), LF시나리오(Long-term Future Scenario, 2071∼2100년)의 3개의 구간으로 설정하여 기준기간과 전망기간의 연평균강우량에 대한 경향성분석을 실시하였다. 그 결과 NSQM이 FF시나리오에서 330.1mm(25.2%), MF시나리오에서 564.5mm(43.1%), LF시나리오에서 634.3mm(48.5%)로 증가하는 전망결과를 나타내고 있었다. 정상성기법을 적용한 결과, 전망기간 중 전체적으로는 동일한 평균값을 갖는 목표통계모수를 사용한다고 하여도, 전망전반부에서 과다하고, 후반부에서 오히려 과소한 전망을 보여주고 있었다. 이러한 결과는 비정상성기법을 사용함으로써 상당부분 개선될 수 있음을 확인하였다.