검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Rye, whole-crop barley and Italian Ryegrass are major winter forage species in Korea, and yield monitoring of winter forage species is important to improve forage productivity by precision management of forage. Forage monitoring using Unmanned Aerial Vehicle (UAV) has offered cost effective and real-time applications for site-specific data collection. To monitor forage crop by multispectral camera with UAV, we tested four types of vegetation index (Normalized Difference Vegetation Index; NDVI, Green Normalized Difference Vegetation Index; GNDVI, Normalized Green Red Difference Index; NGRDI and Normalized Difference Red Edge Index; NDREI). Field measurements were conducted on paddy field at Naju City, Jeollanam-do, Korea between February to April 2019. Aerial photos were obtained by an UAV system and NDVI, GNDVI, NGRDI and NDREI were calculated from aerial photos. About rye, whole-crop barley and Italian Ryegrass, regression analysis showed that the correlation coefficients between dry matter and NDVI were 0.91∼0.92, GNDVI were 0.92∼0.94, NGRDI were 0.71∼0.85 and NDREI were 0.84∼0.91. Therefore, GNDVI were the best effective vegetation index to predict dry matter of rye, wholecrop barley and Italian Ryegrass by UAV system.
        4,000원