In this study, We designated the injection molded plug housing for charging electric vehicles as a research subject. And we analyzed the effect of Rib design on the quality of injection molded products. First, we used the Taguchi method to derive optimal conditions for rib design. The factors were set as the Thickness of the rib, the Height of the rib, and the Radius of the rib. Each factor consisted of 5 levels and generated conditions for a total of 125. We performed an injection molding analysis and confirmed significant factors affecting the deformation of injection molded products through ANOVA. Based on this, the 25th design detail was selected as the optimal condition. In addition, We compared the results of the molding analysis with the molded products that did not design ribs. We confirmed that the molded product designed with ribs under optimal design detail improved the deformation amount by 22.22% and the residual stress by 8.35%, compared to the molded product not designed with ribs.
In this study, we used a numerical analysis program to study the molding conditions that affect the flow rate at the time of injection, using a spiral mold, which is mainly used for the evaluation of the flow rate of plastic resin. The mold temperature, melt temperature, and flow rate are composed of experimental factors. The three plastic forming factors were divided into five to six levels each. Since then, changes in the flow rate temperature were analyzed as the level of each forming factor increased. Experiments showed that all three forming factors increased the filling length of the spiral mold and the temperature of the flow front by a total of 34.53°C, melt temperatures increased the temperature of the flow front by a total of 34.53°C, the temperature increased by the flow rate was 23.5°C, and the temperature increased by the mold temperature was 1.99°C. It was shown that the melt temperature was the largest, followed by the flow rate and mold temperature. It was also possible to check the effect of plastic forming factors on the speed of the flow front.
In the case of Inmold injection, it is a device which conducts injection and painting. In order to design it is important composition of devices to accurate feed of film and process of analysis. It used program of plastic injection flow analysis in order to a flow aspect of resin. It might be used shape crystallization of products, design of mold and process of feed device. In the case of inmold injection, film supply equipment is one of important device. 2-dimensional designs and 3-dimensional modelings are performed for its manufacturing. Specially 3-dimensional modeling data is used in structural strength analysis by finite element method. These background data is avail of manufacture of film supply equipment. Finally it is performed mold injection test and we got the satisfactory result.
CAE technology is an integrated tool including all aspects such as powder, binder system, mixing, injection molding, debinding and sintering. Therefore, CAE technology is considered as one of core technologies for PIM industry in the future. Recently many researchers are developing not only CAE software itself but also application procedures of CAE software. In this study, the applications for CAE technology in PIM industry are presented including feedstock mixing effect, several cases of troubleshooting and optimization procedure.