검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2014.10 KCI 등재 서비스 종료(열람 제한)
        This research investigated the feasibility of rice husk (RH) as a biosorbent for the removal of anions from aqueoussolution. RH-g-GMA-Am biosorbent, which possesses anionic exchangeable function, was prepared through graftpolymerization of glycidyl methacrylate (GMA) in the presence of N,N'-methylene-bis-acrylamide as a cross-linker usingpotassium peroxydisulphate as a redox initiator and subsequent amination reaction using ethylenediamine (EDA),diethylenetriamine (DETA), dimethylamine (DMA) and trimethylamine (TMA) as a amine source. Fourier transforminfrared (FTIR) and scanning electron microscopy (SEM) analysis as well as the sorption capacity for anions verifiedthe presence of grafted GMA polymers and amine groups on the RH surface. The zero point of surface potential ofaminated RH-g-GMA-Am sorbent was 6.4, which facilitated the sorption of anions on the positively charged sorbent atpH<6.4. The sorption capacity of RH-g-GMA-Am depending on the amination chemicals increased in the order:DETA≥EDA>DMA>TMA, i.e., primary amine>secondary amine>tertiary amine. The sorption selectivity of RH-g-GMA-Am sorbent aminated with DETA and EDA in the presence of equimolar anions and at pH 4.7 increased in theorder: SO4>PO4>NO3>F. Furthermore, their sorption capacities for PO4 were much higher than those of commercialanion-exchange resins. The results obtained suggest that the RH-g-GMA-Am biosorbent prepared by the GMA graftcopolymerization and subsequent amination can be used as an effective anion-exchanger comparable to commercial anion-exchange resins.