Transition metal carbides (TMCs) are used to process difficult-to-cut materials due to the trend of requiring superior wear and corrosion properties compared to those of cemented carbides used in the cutting industry. In this study, TMC (TiC, TaC, Mo2C, and NbC)-based cermets were consolidated by spark plasma sintering at 1,300 oC (60 oCmin) with a pressure of 60 MPa with Co addition. The sintering behavior of TMCs depended exponentially on the function of the sintering exponent. The Mo2C-6Co cermet was fully densified, with a relative density of 100.0 %. The Co-binder penetrated the hard phase (carbides) by dissolving and re-precipitating, which completely densified the material. The mechanical properties of the TMCs were determined according to their grain size and elastic modulus: TiC-6Co showed the highest hardness of 1,872.9 MPa, while NbC-6Co showed the highest fracture toughness of 10.6 MPa*m1/2. The strengthened grain boundaries due to high interfacial energy could cause a high elastic modules; therefore, TiC-6Co showed a value of 452 ± 12 GPa.
Thermal shock resistance property has recently been considered to be one of the most important basic properties, in the same way that the transverse-rupture property is important for sintered hard materials such as ceramics, cemented carbides, and cermets. Attempts were made to evaluate the thermal shock resistance property of 10 vol% TaC added Ti(C,N)-Ni cermets using the infrared radiation heating method. The method uses a thin circular disk that is heated by infrared rays in the central area with a constant heat flux. The technique makes it possible to evaluate the thermal shock strength (Tss) and thermal shock fracture toughness (Tsf) directly from the electric powder charge and the time of fracture, despite the fact that Tss and Tsf consist of the thermal properties of the material tested. Tsf can be measured for a specimen with an edge notch, while Tss cannot be measured for specimens without such a notch. It was thought, however, that Tsf might depend on the radius of curvature of the edge notch. Using the Tsf data, Tss was calculated using a consideration of the stress concentration. The thermal shock resistance property of 10 vol% TaC added Ti(C,N)-Ni cermet increased with increases in the content of nitrogen and Ni. As a result, it was considered that Tss could be applied to an evaluation of the thermal shock resistance of cermets.
As the automobile industry has recently developed, the automobile parts processing industry is also increasing. However, as the processing companies don't have their own studies or facilities now, their productivity is low. And they are in difficult situations because they cannot stay economically competitive. This study measured the cutting force, surface roughness, and tool wear of Ductile Cast Iron(FCD500) used in automobile brake modules in automobile parts to try to help harsh realities of automobile parts processing industry. And it drew the result by taking a test to increase productivity of processing companies as interrupted cutting is more used in industrial settings than continuous processing.
The pure Ti, Ni and carbon powders were reaction milled to synthesize the TiC-Ni based cermet powders with ultrafine microstructures. After milling, the ultrafine TiC or amorphous Ti-Ni phase was obtained, respectively, according to the milling condition. The effects of milling variables on the synthesizing behavior of the powders were investigated in detail. The sintered TiC-Ni based cermet of the reaction milled powders consisted of very fine TiC of 0.2~1.5m, as compared with that of a commercial cermet of 3~5m. This demonstrates the potenial of reaction milling as an effective processing route for the preparation of cermet materials.