The influence of sulfate on the selective catalytic reduction of on the Ag/ catalyst was studied when was used as a reducing agent. Various preparation methods influenced differently on the activity. Among the methods, cogelation precipitation gave best activity. When sulfates were formed on the surfaces of samples prepared by impregnated and deposition precipitation, activity was enhanced as long as suitable forming condition is satisfied. The major sulfate formed in Ag/ catalyst was the aluminum sulfate and it seems that this sulfate acted as a promoter. When Mg was added to the Ag/ catalyst it promoted activity at high temperature. Intentionally added sulfate also enhanced activity, when their amount was confined less than 3 wt%.
A (5 wt.%)Mn-(1 wt.%)V2O5/TiO2 catalyst were prepared by co-precipitation method and used for low-temperature selective catalytic reduction (SCR) of NOx with ammonia in the presence of oxygen. The properties of the catalysts were studied by X-ray diffraction (XRD), temperature programmed reduction (TPR) and scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDS).
The experimental results showed that (5 wt.%)Mn-(1 wt.%)V2O5/TiO2 catalyst yielded 81% NO conversion at temperature as low as 150℃ and a space velocity of 2,400 h-1. Crystalline phase of Mn2O3 was present at ≥15% Mn on V2O5/TiO2. XRD confirmed the presence of manganese oxide (Mn2O3) at 2θ=32.978°(222). The XRD patterns presented of (5 wt.%)Mn-(1 wt.%)V2O5/TiO2 did not show intense or sharp peaks for manganese oxides and vanadia oxides. The TPR profiles of (5 wt.%)Mn-(1 wt.%)V2O5/TiO2 catalyst showed main reduction peak of a maximum at 595℃.