높은 종횡비와 원자 수준의 얇은 두께를 갖는 다공성 2D 소재는 고성능 분리막 제작에 활용된다. 이를 위해서는 다공성 2D 소재를 다공성 지지체 위에 균일하게 도포할 수 있는 코팅법이 필수이다. 본 연구는 이를 위한 제올라이트 MFI 나노막의 간단하면서도 효과적인 코팅법을 제시한다. 직접합성법으로 합성된 제올라이트 MFI 나노막은 물에 분산되면서 동 시에 표면 활성을 보여, 이 특성을 활용하여 소수성 계면에 흡착시키는 것이 가능하다. 소수성 개질을 다양한 형태의 지지체 에 적용하여, 이들 표면에 고밀도의 나노막 흡착 코팅이 가능함을 보였다. 또한, 이 흡착코팅의 반복 수행을 통해 나노막의 완전피복을 달성하고, 이를 연속적인 MFI 필름 및 멤브레인으로 성장시킬 수 있었다. 이 간단한 코팅법은 제올라이트 나노막 뿐만 아니라, 표면활성을 보이는 다른 2D 소재에도 적용 가능할 것으로 보이며, 2D 소재의 활용도를 제고할 수 있을 것이다.
분자체(molecular sieve)로 알려진 제올라이트 분리막 중에 8-membered ring(8 MR) 구조를 지닌 제올라이트를 다공성 지지층 위에 연속적인 분리막 형태로 제작하고자 한다. 8 MR 구조 중에서도 소수성을 띠는 제올라이트 기반으로 높은 이산화탄소 선택적인 분리 능력을 보이고자 한다. 특히, 이산화탄소를 분자 크기가 큰 질소나 메탄으로부터 분리하는 게 아니라, 도전적인 과제로서 수분이 존재하는 feed 조건에서 높은 이산화탄소 분리 능력을 지닐 수 있도록 분리막을 제작하고자 한다. 이번 발표에서는 최근에 얻은 제올라이트 분리막을 만드는 방법과 그 방법으로 제작한 제올라이트 분리막의 이산화탄소 분리능력에 대해 발표하고자 한다.
소수성 ZSM-5 분리막을 결정성장핵의 수열합성 2차 성장법으로 다공성 스테인레스 스틸 지지체의 안쪽에 합성하였으며, 이렇게 제조한 분리막을 이용하여 n-부탄올 수용액으로부터 n-부탄올을 선택적으로 분리하였다. 공급 수용액의 농도 변화 및 운전 온도의 변화에 따른 투과증발 특성을 관찰하였다. 공급 수용액 내의 n-부탄올 농도를 각각 0.001, 0.005, 0.01 그리고 0.015 몰분율로, 운전 온도는 25C, 35℃ 그리고 45℃로 바꾸면서 실험하였다. 운전 온도가 45℃인 실험조건에서 공급측 n-부탄올의 몰분율이 0.001에서 0.015로 증가함에 따라 n-부탄올의 플럭스는 약 2g/㎡/hr 에서 27g/㎡/hr 로 크게 증가하였다. 이 결과로 투과물 내의 n-부탄올의 농도가 0.0016 몰분율에서 0.052 몰분율로 상당히 증가함을 알 수 있었다. 공급 농도가 0.015인 상태에서 운전 온도가 25℃에서 45℃로 증가함에 따라 n-부탄올의 플럭스는 약 13g/㎡/hr 에서 27g/㎡/hr 로 크게 증가하였으며, 투과물 내의 n-부탄올 농도도 따라서 0.045에서 0.052로 증가함을 관찰할 수 있었다.