기술의 발전으로 스마트 선박과 관련된 다양한 연구가 진행되고 있으며, 기관실을 무인으로 순찰할 수 있는 기관실 순찰 로봇 도 이러한 연구 중의 하나이다. 순찰로봇은 인공지능을 통해 학습된 정보를 기반으로 기관실을 이동하며 기기 정상 유무 및 누수, 누유, 화재 등의 이상 유무를 파악한다. 기관실 순찰로봇에 관한 연구는 인공지능을 이용한 객체 검출에 관한 연구가 주로 진행되고 있으나, 순 찰로봇의 이동 및 제어에 관한 연구는 부족한 상황이다. 이는 순찰로봇이 객체를 검출하더라도 검출한 객체까지 이동할 방법이 없다는 문제를 야기한다. 이에 본 논문에서는 기관실 이상상황 발생 시 빠르게 이상 유무를 파악할 수 있는 기동성을 확보하기 위해, A* 알고리 즘을 적용하여 순찰로봇이 최단경로를 탐색할 수 있는지를 확인하였다. 라이다를 장착한 소형차를 이용하여 선박 기관실을 주행하며 데 이터를 얻어, SLAM으로 매핑하여 지도를 만들었다. 매핑한 지도에서 순찰로봇의 출발 지점과 목표 지점을 설정하고, A* 알고리즘을 적용 하여 출발 지점부터 목표 지점까지 최단 경로를 탐색하는지를 확인하였다. 시뮬레이션 결과 매핑된 지도에서 출발 지점부터 목표 지점까 지의 장애물을 회피하며 최단 경로를 잘 탐색함을 확인 할 수 있었으며, 기관실 순찰로봇에 적용하면 선박안전에 도움이 될 것으로 사료 된다.
선박 기관실은 기술의 발전으로 인해 자동화 시스템이 향상되었지만, 해상에서는 바람, 파도, 진동, 기기 노후화 등의 다양한 변수가 많아 자동화 시스템에서 계측되지 않는 풀림, 절단, 누유, 누수 등이 발생하므로 기관사는 주기적으로 순찰을 한다. 순찰 시에는 1명의 기관사만 순찰하는 경우도 있으며, 이는 고온고압 및 회전기기가 운전 중인 기관실에서 많은 위험요소를 가지고 있다. 기관사가 순찰 시에는 오감을 활용하며, 특히 시각에 의존한다. 본 논문에서는 로봇이 기관실을 순찰하며 기기의 특이사항을 검출하고 알려주는 기관실 순찰 로봇을 구현하기 위한 선행연구로서 선박 기관실 기기의 이미지를 합성곱 신경망을 이용하여 분류하였다. 선박 기관실의 이미지 데이터 셋을 구성한 후 사전 훈련된 합성곱 신경망 모델로 학습하였다. 학습한 모델의 분류 성능은 높은 재현율을 보였으며, 클래스 활성화 맵으로 이미지를 시각화 하였다. 데이터의 양이 제한적이어서 일반화할 수는 없지만, 각 선박의 데이터를 전이 학습으로 학습시키면 적은 시간과 비용으로 각 선박의 특성에 맞는 모델을 구축할 수 있을 것으로 사료된다.