Recently, there has been growing anxiety about automotive due to accidents suspected to be caused by sudden unintended acceleration. A study was conducted on the effect of automotive defects on Sudden Unintended Acceleration. Experimental results were derived and analyzed by simulating the situation of sudden unintended acceleration while driving a automotive. It was experimentally confirmed that the defect in the TPS sensor had no direct effect on the rapid increase in RPM. It has been confirmed that the vehicle brakes normally when the brakes are applied even if there is a TPS sensor defect. In the future, it is necessary to investigate the correlation between automotive defects and sudden unintended acceleration through various experiments.
This paper presents a PID automatic gain-tuning algorithm for the electronic throttle valve which is driven by wire. Since the system characteristics of position control for electronic throttle valve are so complicated that both the real time robustness and the manufacturing cost must be considered for mass production. To resolve this paradox, a kind of algorithm called RLS (Recursive Least Square) is adopted for the control of the ETB (Electronic Throttle Body). Using this algorithm, the PID gains can be adjusted automatically with the estimated system parameters. Furthermore, a pre-filter is supplemented for the sake of the robustness against the friction and loads. From the industrial requests for the system, the design specifications are decided as follows: the settling time should be less than 1 sec and the overshoot should be kept below 3%. The results of the experiments based on this approach show that the high robustness can be achieved while the system stability is satisfied steadily. A parameter estimation scheme and a gain-tuning algorithm have been properly combined and utilized in this research and the effectiveness is verified through the real experiments.