본 연구는 손 재활을 위한 탐색적 고찰의 일환으로, 자수 기반 스트레인 센서를 단층과 복층 구조로 설계하여 각 구조에서의 접촉 면적 변화와 센싱 성능의 차이를 비교⋅분석함으로써 손가락 동작 센싱에 적합한 센서 구조 설계 방향을 제시하고자 하였다. 1차 실험에서는 다양한 스티치 밀도와 층 구성으로 제작된 센서를 3D 프린팅 관절 모형 에 올린 후 1 Hz 주기의 신전–이완 동작을 반복 적용하여, 생성된 신호의 peak-to-peak 전압(mVp-p)을 측정하였다. 수집된 신호는 형상 분석과 비모수 통계 검정을 통해 정량적으로 분석하였다. 2차 실험에서는 1차 실험 결과를 바탕 으로 복층 구조 센서를 선정하고, 접촉 점 수와 스티치 밀도를 기준으로 네 가지 조합의 센서를 장갑 형태로 제작하 였다. 그리고 스마트 장갑을 착용한 피험자의 엄지와 검지에 대해 굽힘–폄 동작을 기준으로, 센싱 신호의 안정성과 품질을 형상적 특성과 정량 지표를 통해 분석하였다. 실험 결과, 1차에서는 복층-고밀도 구조 센서가 단층-저밀도 구조에 비해 유의하게 높은 신호 크기를 나타냈다. 2차 실험에서도 복층-고밀도 구조가 상대적으로 더 우수한 신호 품질을 보이는 것으로 확인되었다. 결론적으로, 1차 실험에서는 센서의 구조적 설계가 신호 세기에 직접적인 영향을 미친다는 점을 입증하였고, 2차 실험에서는 실제 사용 환경에서도 자수 구조적 변수에 따라 신호 품질이 달라짐을 확인하였다. 이는 자수형 센서 설계 시 구조적 설계 의 중요성을 시사하며, 웨어러블 손 재활 장치 개발에 기초 자료로 활용될 수 있을 것이다.
최근 신체활동에 대해 인식하는 센서와 그 제품군에 대한 관심 및 수요가 증가하고 있다. 특히 유연하고 연신이 가능하 며 사용자의 생체신호를 감지할 수 있는 웨어러블 소재에 대한 개발이 주목받고 있다. 본 연구에서는 소수성 소재에 Micro Needle을 통해 미세 구멍을 형성한 후 SWCNT 분산용액에 대한 함침 효율을 향상시키는 실험을 수행하였다. 본 연구에서 는 구멍을 뚫지 않은 소재를 대조(control) 군으로 함침을 진행, 비교 분석하였다. 센서의 전기전도도를 평가하기 위해 Strain UTM (Universal Testing Machine, UTM, Dacell)과 저항을 측정하는 멀티미터(Keysight)를 이용해 센서를 인장했 을 때의 센서의 전기전도도를 측정하였다. 또한 센서의 내구성을 평가하기 위해 시료별로 500회 인장을 진행한 후에 센서 의 전기전도도를 평가하였다. 그 결과 Needling을 한 센서의 전기전도성이 Needling을 하지 않은 센서에 비해 최소 16배 이상 뛰어남을 알 수 있었다. 또한 센서의 초기 저항에 비해 게이지 팩터도 우수해 센서로서 좋은 성능을 확인할 수 있었다. 이를 통해 친수성 소재에 비해 물성이 뛰어나지만, 높은 표면장력 때문에 함침 효율이 좋지 않았던 소수성 소재의 함침 효율을 높여 신체의 움직임을 더 효과적으로 감지하고 내구성과 활용 가능성이 뛰어난 센서를 제작했다.
ICT 산업의 글로벌 시장을 선점할 수 있는 다음 세대의 개발이 필요한 상황이 일어남에 따라 웨어러블 디바이스 의 생체 신호 모니터링에 대한 관심이 크게 증가하고 있다. 이에 따라 본 연구에서는 히스테리시스가 적은 E-Band를 사용하여 단일벽 탄소나노튜브(SWCNT) 분산 용액에 함침 공정을 통해서 저항형 직물 인장 센서(Resistive textile strain sensor)를 개발하였다. 전기전도성이 부여된 e-band에 저항 신호를 측정하기 위해 만능재료시험기(UTM)과 Microcontroller unit인 아두이노와 LCR 미터를 이용해서 인장의 변화에 따른 저항 변화를 측정하였다. 원단으로 이 루어진 텍스타일 스트레인 센서의 특성상 발생하는 다양한 노이즈들을 효과적으로 처리하기 위하여 신호처리 과정 (Signal processing)의 노이즈 필터링의 이동평균 필터, 사비츠키-골레이 필터, 중앙값 필터들을 사용하여 센서의 필 터 성능을 평가하였다. 그 결과 이동평균 필터의 필터링 결과의 신뢰도가 최소 89.82%, 최대 97.87%으로 이동평균 필터링이 텍스타일 스트레인 센서의 노이즈 필터링 방식으로 적합하였다.
본 연구의 목적은 그래핀(Graphene)을 사용하여 폴리우레탄 나노웹(Polyurethane Nanoweb)에 전기전도성을 부여하고, 이를 이용하여 나노웹 기반의 스트레인센서(Strain Sensor)를 개발하는 것이다. 이를 위해 1% 그래핀 잉크를 폴리우레탄 나노웹에 푸어코팅(Pour-coating)한 후 PDMS(Polydimethylsiloxane)로 후처리를 하여 착용 가능한 스트레 인센서를 완성하였다. 시료 표면에 전도성 물질이 잘 코팅되었는지 확인하기 위해 전계방사형 주사전자현미경 (FE-SEM)를 이용하여 시료의 표면 특성을 평가하였다. 시료의 전기적 특성 평가는 멀티미터(Multimeter)를 사용하여 시료의 선저항(Linear Resistance)을 측정하고, 시료를 각각 5%, 10% 인장하였을 때 선저항이 어떻게 변하는지 비교하였다. 또한 시료의 성능을 평가하고자 게이지율(Gauge Factor)을 구하였다. 착의평가 실험은 완성된 스트레인센서를 더미에 착용시킨 후 MP150(Biopac system Inc., U.S.A.)과 Acqknowledge(ver. 4.2, Biopac system Inc., U.S.A.)를 사용해 인장에 따른 호흡신호를 측정하였다. 표면 특성을 평가한 결과, 모든 전도성 나노웹 시료들이 그래핀 잉크로 균일하게 코팅되어있음을 확인하였다. 인장에 따른 저항값 측정 결과, 그래핀을 처리한 시료인 시료 G가 가장 낮은 저항값을, 그래핀을 처리한 후 열처리를 한 시료인 시료 G-H가 가장 높은 저항값을 가졌고, 시료 G와 시료 G-H의 경우 길이가 5%, 10%로 늘어남에도 선저항값의 변화가 안정적으로 증가하는 것으로 나타났다. 저항값 결과와는 달리, 시료 G가 시료 G-H보다 더 높은 게이지율을 보였다. 실제로 착의평가 결과, 시료 G-H를 이용해 만든 스트레인센서가 안정된 Peak값으로 측정되어 좋은 품질의 신호를 얻었다. 그러므로 본 연구를 통해 그래핀 잉크를 처리한 폴리우레탄 나노웹이 호흡 센서로서의 역할을 충분히 수행하는 것을 확인하였다.