Ultra-fine copper powders with particle size about 150 nm were synthesized from copper hydroxide slurry by wet method using hydrazine as reduction agent and several sur factants at below . The particle size distribution and dispersion of synthesized powders as function of temperature, feeding rate of reduction and especially, sur factants were character ized by XRD, BET, PSA and SEM by this process.
Ultrafine copper powder was prepared from slurry with hydrazine, a reductant, under . The influence of various reaction parameters such as temperature, reaction time, molar ratio of , PvP and NaOH to Cu in aqueous solution had been studied on the morphology and powder phase of Cu powders obtained. The production ratio of Cu from CuO was increased with the ratio of and the temperature. When the ratio of was higher than 2.5 and the temperature was higher than , CuO was completely reduced into Cu within 40 min. The crystalline size of Cu obtained became fine as the temperature increase, whereas the aggregation degree of particles was increased with the reaction time. The morphology of Cu powder depended on that of the precursor of CuO and processing conditions. The average particle size was about
고순도 니켈 금속염으로부터 미세하고 입도가 균일한 니켈 분말 직접 제조 연구를 수행하였다. 구형의 형상을 갖는 미세한 니켈 분말을 제조하기 위하여 입도제어가 가능한 슬러리환원법을 사용하였다. 제조된 니켈 분말에 화학성분, 입도, X선회절, 주사전자현미경 분석을 실시하여 니켈 분말의 특성을 조사하였다. 환원제로 하이드라진(hydrazine)을 사용하고, 4.5 M NaOH에서 90분 반응시켜 약 100~200 nm의 입도를 가진 분산도가 양호한 구형의 니켈 분말을 제조할 수 있었다.