As aluminum foam has the most superior absorption of impact energy, this material has been used at automobile and airplane. If aluminum foam is used by jointing bolt and nut, it can be broken. Therefore, it is more effective to bond aluminum foam and other materials by adhesive. In this study, the fatigue fracture simulation through ANSYS program is carried out on the aluminum foam specimen bonded with adhesive as the type of DCB Mode Ⅲ. There are four kinds of specimens with the types of DCB Mode Ⅲ in this study. The thicknesses of four specimens are 35mm, 45mm, 55mm and 65mm. In cases of specimen thicknesses of 35mm, 45mm, 55mm and 65mm, the maximum loads are shown as ±0.2kN, ±0.55kN, ±1kN and ±1.2kN respectively. As the specimen thickness increases, the maximum loads increase. The results of fatigue experiment as specimen thickness of 55mm can be shown to approach the simulation results by confirming the simulation results of this study. So, The simulation data can be applied in order to investigate the mechanical property at DCB specimen with the type of Mode Ⅲ.
In this paper, the corrosion fatigue crack propagation behavior of structure rolled steel (SWS 41C) was investigated by changing the thickness, and this experiment was done by the three point bending corrosion fatigue tester. The main results obtained are as follows: 1) As the thickness of specimen becomes thicker, the corrosion sensitivity to initial stage crack becomes some sensitive, and that the fatigue life becomes more sensitive. 2) The crack growth rate to initial stage crack (da/dN) was retarded as the thickness of specimen becomes thicker. But after initial stage crack, as the thickness of specimen is more thicker, da/dN is more rapid. 3) As the corrosion fatigue crack length grows, the accelerative factor of thick specimen (t=12mm) is more higher than that of thin specimen (t=6mm). 4) As the corrosion fatigue crack length grows, the corroson potential of both thick specimen and thin specimen becomes more less noble potential, however thick specimen (t=12mm) tends to more less noble potential than that of thin specimen(t=6mm).
본 연구에서는 J 적분을 이용하여 두께의 변화에 따른 파괴인성치의 거동을 검토하기 위하여 두께 25mm의 일반구조용 압연강판을 평면가공하여 두께 5, 10, 15, 20, 25mm의 CT 시험편을 제작하였다. 이때 크랙비는 z=0.60인 상태에서 두께를 변화시켜가면서 파괴인성수 J 하(C)와 열단계수 T의 거동을 고찰하였다. 얻어진 결과를 요약하면 다음과 같다. 1) 평면응력 파괴인성치 J 하(C)는 각각의 두께에 대하여 Merkle식에 의한 결과가 가장 높게 나타나고 Rice식, Simpson식, Yoon식의 순서로 나타난다. 2) 평면응력 파괴인성치 J 하(C)는 동일한 J 적분식을 적용하였을 때 두께가 감소함에 따라 증가하였다가 두께 15mm를 기준으로 다시 감소한다. 3) Yoon식을 사용할 경우 평면응력 파괴인성치 J 하(C)와 시험편 두께 B의 상관관계를 무차원화시켜 다음과 같은 실험식을 얻었다. J 하(C)/J 하(IC)=1.7-15.1(B/W)+112.9(B/W) 상(2) -301.3(B/W) 상(3) +260.6(B/W) 상(4) R=0.999 4) 열단계수 T는 각각의 두께에 대하여 Merkle식에 의한 결과가 가장 높게 나타나며, Rice식, Simpson식, Yoon식에 의한 결과의 순으로 나타난다. 5) 열단계수 T는 각각의 단면의 두께에 대하여 동일한 J 적분식을 적용하였을 때 두께의 변화에 따라 거의 일정한 값을 나타내며, 이에 많은 대한 연구 검토가 요망된다
본 연구에서는 피로파괴에 영향을 주는 여러 인자중에서 우선 피로크랙전파에 대한 시험편 두께의 영향을 검토하기 위하여 최초 두께 25mm인 일반구조용 압연강재를 평면가공하여 두께 5, 10, 15, 20, 25mm인 CT 시험편을 가공한 후 인장-인장편진반 복피로시험을 행하여 실험한 결과 다음과 같은 결론을 얻었다. 1. 피로수명이 가장 짧게 나타나는 임의의 시험편 두께가 존재하며, 본 실험의 경우에는 두께 15m인 시험편의 경우 피로수명이 가장 짧게 나타났다. 2. 피로크랙의 발생은 두께가 두꺼운 시험편의 경우가 늦지만 피로크랙 성장은 두꺼운 시험편의 경우가 빠르게 나타났다. 3. 본 실험에서 paris시의 계수 m의 값은 절위는 1.98~4.59로서 시험편의 두께가 두꺼울수록 m의 값이 크게 된다.(이 논문의 결론부분임)