Since the expectations and demand for higher ride comfort of the customers (driver and passengers) have been dramatically increased, new vehicle model launched on the market have not only better performance and design-wise appealing, but also ride comfort has to be increasingly better than its predecessor. Automotive manufactures have focused on the increasing human thermal comfort. To achieve a high thermal comfort, most manufacturers provide a system for their cars to ensure ventilation, heating and cooling air in the passenger compartment. As results, the influence of the seats and situations in the thermal human comfort are considered. And, the temperature distribution pattern on the human face is acquired at natural condition, both warm condition on which seat is managed around 30℃ and hot condition on which seat is managed around 50℃.
본 연구에서는 기존의 공조방식 및 본 연구에 제안된 개별환경제어시스템(PEM)으로부터 재실자가 거주하여 사용하고 있는 컴퓨터룸(CR)에 대해 기하학적으로 3차원 시뮬레이션을 수행하여 CR의 열취득과 재실자 온열 쾌적감을 감성공학적 측면에서 분석하였다. 본 연구로부터 바닥으로부터 공기를 유입하여 천정으로 유출하는 바닥취출공조(TAM)방식이 실내 환경 개선에 유리하고 디퓨저만을 통하여 공기가 유입되어 천정과 바닥으로 공가가 유출되는 개별공조(PEM) 방식은 열적 냉각 성능은 좋으나 컴퓨터와 재실자 주변에 강력한 재순환 유동을 유인하여 실내 환경의 쾌적감 측면에서는 불리하다. 그러나 PEM과 TAM방식의 결합이 감성공학적 온열특성 분포로부터 CR의 재실자 주변온도 분포에 최적임을 알 수 있다.
Thermal neutrality is not enough to achieve thermal comfort. The temperature level can be the optimal, and still people may complain. This situation is often explained by the problem of local discomfort. Local discomfort can be caused by radiant asymmetry, local air velocities, too warm and too cold floor temperature and vertical temperature difference. This temperature difference may generate thermal discomfort due to different thermal sensation in different body parts. Therefore, thermal comfort can not be correctly evaluated without considering these differences. This study investigates thermal discomfort sensations of different body parts and its effect on overall thermal sensation and comfort in air-heating room. Experimental results of evaluating thermal discomfort at different body parts in an air-heating room showed that thermal sensation on the shoulder was significantly related to the overall thermal sensation and discomfort. Although it is known that cool-head, warm-foot condition is good for comfort living, cool temperature around the head generated discomfort
Draft is defined as an unwanted local cooling of the human body caused by air movement. It is a serious problem in many ventilated or air conditioned buildings. Often draft complaints occur although measured velocities in the occupied zone maybe lower than prescribed in existing standards. Purpose of this study is to clarify the evaluation of thermal comfort based on temperature and air velocity in winter. Experiments were performed in an environmental chamber in winter. Indoor temperature and air velocity was artificially controlled. The experiments were performed to evaluate temperature conditions and air velocity conditions by physiological and psychological responses of human. According to physiological responses and psychological responses, it was clear that the optimum air velocity is about 0.15 m/s and 0.30 m/s.