염료감응형 태양전지를 위한 겔 고분자 전해질막을 제조하였다. 고분자물질로는 Poly(ethylene oxide) (PEO)를 사용하였으며, 가소제로서 poly(ethylene glycol) (PEG)을 첨가하였고, 전해질염 및 I-/I3-의 공급원으로서 KI 및 I2를 첨가하여 고분자 전해질막을 제조하였으며, 이와 같은 고분자 전해질막을 바탕으로 염료감응형 태양전지를 제조하였다. 고분자 전해질 내의 가소제로서의 PEG는 95%의 함량으로 주입되었으며, 전해질 내의 EO 1 mole 당 KI mole 수([KI]/[EO] 비)가 0.022, 0.044, 0.066 및 0.088이 되도록 KI가 주입되었다. 이러한 방식으로 제조된 겔 전해질막은 상온에서 왁스(wax) 형태를 보였다. 낮은 KI 함량의 영역에서는 KI 함량이 증가하면서 전해질막을 통한 이온전도도가 증가하였으며, [KI]/[EO]비가 0.066인 때에 이온전도도는 최대값을 보인 후 0.088로 증가하면서 이온전도도는 감소하였다. 염료감응형 태양전지에 있어서는 고분자 전해질막 내의 KI 함량이 증가하면서 VOC는 지속적으로 감소하였다. 반면, JSC의 경우 낮은 KI 함량의 범위에서는 KI 함량이 증가하면서 JSC는 증가하였으며 [KI]/[EO]비가 0.044인 때에 JSC가 최대값을 보인 후 그 이상의 높은 범위에서는 KI함량의 증가에 따라 JSC는 감소하였다.
Nanofiltration[NF45] and reverse osmosis membrane[HR98PP] separation treatment of dyestuff wastewater was carried out in order to seperate relatively pure water from synthetic dyestuff wastewater, which consists of reactive dye, acid dye, basic dye, direct dye, and disperse dye. The experiments were performed by using the plate and frame membrane module. In the nanoflltration and reverse osmosis membrane separation, When the NaCl concentration was 0.1, 5.0, and 20.0%, retention was 63.0, 46.0, 0.9%, respectively. When permeate flux was 125.0, 67.5, and 45.0 L/㎡·h, the osmotic pressure increased with increasing the NaCl concentration. Permeate flux of two membranes increased as temperature increased due to segmental movement of polymer of the membrane and the rejection rate of dyestuff was decreased gradually. It was found that the rejection rate was about 95% in the nanofiltration, while the reverse osmosis membrane showed a high rejection rate of 99% under all temperature and pressures conditions.