검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        강수는 기상학, 농업, 수문학, 자연재해, 토목 및 건설 등 분야에서 매우 중요한 기상 변수들 중 하나이다. 최근 이러한 강수를 탐지하고, 측정 및 예보를 하기 위해서 위성원격탐사기술은 필수적이다. 따라서 본 연구에서는 미국항공우주국(National Aeronautics and Space Administration, NASA)에서 발사한 전 지구 강수 관측 위성인 GPM 위성을 기반으로 다양한 자료와 합성된 강수 자료인 IMERG 자료의 정확도를 한반도, 특히 남한지역에 대해 지상관측자료와 비교분석 하였다. 기상자동관측 장비인 AWS의 관측 강수량을 검증 자료로 사용하여, 2016년 1월부터 12월까지 1년간의 기간 동안 한반도의 육상부분에 대하여 IMERG의 월 강수량 자료를 비교 검증하였다. 잘 알려진 대로 위성은 해안가와 섬 지역 같은 부분에서 단점이 있지만, 별도로 비교 분석하였다. 위성 자료인 IMERG와 지상 관측 자료인 AWS를 비교한 결과, 상관계수가 0.95로 높은 상관성을 보였으며, Bias, RMSE의 오차 비교에서도 각각 월 15.08 mm, 월 30.32 mm의 낮은 오차를 산출하였다. 해안지역에서도 육상지역과 마찬가지로 0.7 이상의 높은 상관계수를 산출하며, 강수 자료로서 IMERG의 신뢰도를 검증하였다.
        4,300원
        2.
        2019.04 KCI 등재 서비스 종료(열람 제한)
        가뭄재해는 다른 재해와 다르게 광범위한 공간에 걸쳐서 충분한 강우가 발생하기 전까지 오랜 기간 동안 발생되는 특성이 있다. 위성 영상은 시공간적으로 지속적인 강수량 관측을 제공할 수 있다. 본 연구는 위성 영상 기반의 강수자료를 활용하여 기상학적 가뭄 전망 모형을 개발하였다. PERSIANN_CDR, TRMM 3B42와 GPM IMERG 영상을 활용하여 강수 자료를 구축한 뒤, 표준강수지수(SPI)를 기반으로 기상학적 가뭄을 정의 하였다. 과거의 가뭄 정보와 물리적 예측 모형 기반의 가뭄 예측 결과를 결합할 수 있는 베이지안 네트워크 기반 가뭄 예측 기법을 이용하여 확률론적 가뭄 예측 결과를 생산하였으며, 가뭄 예측결과를 가뭄 전망 의사결정 모형에 적용하여 가뭄 전망 결과를 도출하였다. 가뭄 전망 정보는 가뭄 발생, 지속, 종결, 가뭄 없음의 4단계로 구분하였다. 본 연구의 가뭄 전망 결과는 ROC 분석을 통하여 물리적 예측 모형인 다중모형 앙상블(MME)을 활용한 가뭄 전망 결과와 전망 성능을 비교하였다. 그 결과, 2∼3개월 가뭄 전망에 대한 가뭄 발생 및 지속의 단계에서는 MME 모형보다 높은 전망 성능을 보여주었다.
        3.
        2016.06 KCI 등재 서비스 종료(열람 제한)
        A novel disaggregation model that combines a machine learning model and kriging of residuals is presented to map precipitation at a fine scale from coarse scale precipitation data. Random forest (RF) and fine scale auxiliary variables are used to estimate trend components at a fine scale. Residual components are then estimated by area-to-point residual kriging. A case study of spatial disaggregation of TRMM monthly precipitation data acquired over the Korean peninsula is carried out to illustrate the potential of the presented disaggregation method. From the evaluation results, the presented method outperformed the RF-based disaggregation method that only considers trend components and ignores residual components, in terms of accuracy statistics and the ability of coherent predictions. This case study indicates that accounting for residual components by applying a proper spatial prediction method such as area-to-point kriging is very important in spatial disaggregation of coarse scale spatial data, even though advanced regression models such as RF could have high goodness of fit for the quantification of relationships between a target attribute and auxiliary variables.
        4.
        2015.02 서비스 종료(열람 제한)
        컴퓨터의 발달로 인하여 분포형 입력 자료를 기반으로 복잡한 물리현상을 고려할 수 있는 수자원/수문 분야의 다양한 해석 모델이 활발하게 개발 및 연구되어지고 있다. 현재 우리나라에서 운영중인 지상관측장비는 AWS(Automatic Weather System), ASOS(Automated Synoptic Observing System)로 총 668개의 조밀한 자동 관측 장비가 운영 중이지만 공간적인 연속자료의 취득에 있어서 보간법의 적용이 불가피하며, 그에 따른 오차가 발생하고 있다. 위성 자료는 연속적인 자료의 취득이 가능하다는 장점이 있지만 지상 관측 장비와의 오차로 인하여 직접적인 기상 위성자료의 이용이 불가능한 상황이다. 이에 본 연구에서는 TRMM(Tropical Rainfall Measuring Mission) 위성자료와 기상청에서 운영중인 80여개의 지상관측장비 자료, 한국의 지형자료를 이용하여 TRMM 위성자료를 이용한 고해상도 강수정보를 생성해보고자 한다. 본 연구는 지점 강우자료와 지형자료 또는 공간적 연속성을 갖는 위성자료(NDVI) 사이의 비교를 통하여 관계성이 큰 연속자료를 선택한다. 차후 선택된 자료와 TRMM 강우자료 사이의 관계식을 통하여 지점 관측자료와 상응하는 위치에 보정된 TRMM 강우 결과와 지점 관측 자료와의 적합성이 뛰어난 관계식을 도출한다. 마지막으로 도출된 결과에 대한 다양한 적합성 검정을 통하여 상세화 된 TRMM 강우정보의 적용성을 평가하고자 한다. 관계식을 활용한 보정된 TRMM의 상세화 정보는 미계측 지역의 공간적 상관성을 재현함으로서 지점자료가 갖는 한계를 보정할 수 있을 것으로 판단되며 다양한 분포형 기반의 수문/수자원 모형에 활용이 가능할 것으로 판단 된다.
        5.
        2012.07 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 지상의 관측 자료와 광역의 정보를 제공하는 수치 예보 모형 자료 및 인공위성 자료를 이용하고 자료와 강수예측치의 물리적 상관 특성을 나타내기 위하여 자료 사이의 비선형 거동을 잘 나타내는 신경망 모형에 적용시켜 단시간 강수 예측을 수행하였다. 이를 위하여 서울지점에 대하여 현재로부터 3시간, 6시간, 9시간, 12시간의 선행시간을 가지는 인공위성 자료(MTSAT-1R) 및 수치 예보 모형 자료(RDAPS, Regional Data Assimilation and Prediction System)와 실시간 전송되는 자동 기상 관측 시스템(AWS, Automatic Weather System)의 관측치를 신경망 모형의 입력 자료로 하여 3시간, 6시간, 9시간, 12시간의 선행시간을 가지는 자료로 강수를 예측 할 수 있는 강수 예측 모형을 개발하였다. 장마와 태풍과 같이 전선형강수와 선풍형강수 등 강수 양상의 차이를 고려하기 위하여 6월, 7월과 8월, 9월 자료를 구분하여 신경망을 구축하였으며, 자료가용성에 기초하여 2006년에서 2008년 기간 동안에 대하여 모형을 학습하고 2009년에 대하여 모형의 적용성을 검증한 결과, 단시간 강수예측에 대한 모형의 적용 가능성을 보여주었으나 다양한 광역 자료와 인공신경망을 사용함에도 불구하고 단시간 강수예측의 정량적 정도향상을 위한 여지가 많음을 보여준다.